Abstract:
In an embodiment a method includes providing a growth substrate with a plurality of semiconductor bodies for the semiconductor devices, wherein each semiconductor body comprises electrical contact structures and a separation layer arranged towards the growth substrate, arranging a rigid first auxiliary carrier on a side of the semiconductor bodies facing away from the growth substrate, wherein the first auxiliary carrier comprises a first detachment layer, detaching the growth substrate by laser radiation, wherein the laser radiation is absorbed in the separation layer, arranging a rigid second auxiliary carrier on a side of the semiconductor bodies facing away from the first auxiliary carrier, wherein the second auxiliary carrier comprise a second detachment layer, detaching the first auxiliary carrier by laser radiation, wherein the laser radiation is absorbed in the first detachment layer and the separation layer still extending continuously over the growth substrate while detaching and mechanically and electrically arranging the semiconductor bodies on at least one permanent carrier.
Abstract:
In an embodiment a method includes providing a growth substrate with a plurality of semiconductor bodies for the semiconductor devices, wherein each semiconductor body comprises electrical contact structures and a separation layer arranged towards the growth substrate, arranging a rigid first auxiliary carrier on a side of the semiconductor bodies facing away from the growth substrate, wherein the first auxiliary carrier comprises a first detachment layer, detaching the growth substrate by laser radiation, wherein the laser radiation is absorbed in the separation layer, arranging a rigid second auxiliary carrier on a side of the semiconductor bodies facing away from the first auxiliary carrier, wherein the second auxiliary carrier comprise a second detachment layer, detaching the first auxiliary carrier by laser radiation, wherein the laser radiation is absorbed in the first detachment layer and the separation layer still extending continuously over the growth substrate while detaching and mechanically and electrically arranging the semiconductor bodies on at least one permanent carrier.
Abstract:
An optoelectronic semiconductor chip includes a carrier, a semiconductor body having an active region that generates and/or receives radiation, and an insulation layer wherein the semiconductor body is fastened on the carrier with a connecting layer; the carrier extends in a vertical direction between a first main surface facing toward the semiconductor body, and a second main surface facing away from the semiconductor body, and a lateral surface connects the first main surface and the second main surface to one another; a first region of the lateral surface of the carrier has an indentation; a second region of the lateral surface runs in the vertical direction between the indentation and the second main surface; the insulation layer at least partially covers each of the semiconductor body and the first region; and the second region is free of the insulation layer.