Abstract:
An optoelectronic component includes a composite body including a molded body; and an optoelectronic semiconductor chip embedded into the molded body, wherein the optoelectronic semiconductor chip includes a first electrical contact on its top side, a first top side metallization is arranged on the top side of the composite body and electrically conductively connects the first electrical contact to the through contact, a second top side metallization is arranged on the top side of the composite body and electrically insulated with respect to the first top side metallization, the second top side metallization completely delimits a part of the top side of the optoelectronic semiconductor chip, and a wavelength-converting material is arranged in a region completely delimited by the second top side metallization on the top side of the composite body, the wavelength-converting material extending as far as the second top side metallization.
Abstract:
A method of producing optoelectronic semiconductor components includes providing a carrier with a carrier underside and a carrier top. The carrier has a metallic core material and at least on the carrier top a metal layer. A dielectric mirror is applied to the core material. At least two holes are formed through the carrier. A ceramic layer with a thickness of at most 150 μm at least on the carrier underside and in the holes is produced. The ceramic layer includes the core material as a component. Metallic contact layers are applied to at least subregions of the ceramic layer on the carrier underside and in the holes so that the carrier top electrically connects to the carrier underside through the holes. At least one radiation-emitting semiconductor chip is applied to the carrier top and the semiconductor chip is electronically bonded to the contact layers.
Abstract:
An optoelectronic semiconductor chip includes a carrier, a semiconductor body having an active region that generates and/or receives radiation, and an insulation layer wherein the semiconductor body is fastened on the carrier with a connecting layer; the carrier extends in a vertical direction between a first main surface facing toward the semiconductor body, and a second main surface facing away from the semiconductor body, and a lateral surface connects the first main surface and the second main surface to one another; a first region of the lateral surface of the carrier has an indentation; a second region of the lateral surface runs in the vertical direction between the indentation and the second main surface; the insulation layer at least partially covers each of the semiconductor body and the first region; and the second region is free of the insulation layer.
Abstract:
An optoelectronic lamp device includes an optoelectronic semiconductor component including a top side including a light-emitting face, and a housing embedding the semiconductor component and leaving free the light-emitting face, wherein a housing face is coated with a light-scattering dielectric resist layer that may scatter light incident on a face of the resist layer facing away from the housing face.
Abstract:
A method of applying a first material to a surface in a plurality of mutually separate coating regions includes: A) providing the surface containing the coating regions; B) producing a first masking layer on the surface by a photolithographic process, wherein the first masking layer includes a plurality of first openings arranged above the coating regions; C) providing a self-supporting second masking layer and then applying the second masking layer to the first masking layer, wherein the second masking layer includes a plurality of second openings arranged above the first openings and having a size less than or equal to a size of the first openings; and D) applying the first material to the surface in the coating regions through the first and second openings in the first and second masking layers.
Abstract:
An optoelectronic component includes a carrier, and a housing material arranged above a top side of a carrier, wherein a cavity is configured in the housing material, a top side of a first optoelectronic semiconductor chip is arranged in the cavity, the first optoelectronic semiconductor chip has a first electrical connection pad arranged at the top side of the first optoelectronic semiconductor chip, and electrically conductively connects by a bond wire to a first contact pad arranged at the top side of the carrier, a first section of the bond wire is arranged in the cavity and a second section of the bond wire is embedded the housing material, a covering material is arranged in the cavity and covers at least one part of the top side of the first optoelectronic semiconductor chip, and the first section of the bond wire is embedded in the covering material.
Abstract:
An optoelectronic lamp device includes an optoelectronic semiconductor component including a top side including a light-emitting face, and a housing embedding the semiconductor component and leaving free the light-emitting face, wherein a housing face is coated with a light-scattering dielectric resist layer that may scatter light incident on a face of the resist layer facing away from the housing face.
Abstract:
An optoelectronic component includes a composite body including a molded body; and an optoelectronic semiconductor chip embedded into the molded body, wherein the optoelectronic semiconductor chip includes a first electrical contact on its top side, a first top side metallization is arranged on the top side of the composite body and electrically conductively connects the first electrical contact to the through contact, a second top side metallization is arranged on the top side of the composite body and electrically insulated with respect to the first top side metallization, the second top side metallization completely delimits a part of the top side of the optoelectronic semiconductor chip, and a wavelength-converting material is arranged in a region completely delimited by the second top side metallization on the top side of the composite body, the wavelength-converting material extending as far as the second top side metallization.
Abstract:
An optoelectronic component includes a carrier, and a housing material arranged above a top side of a carrier, wherein a cavity is configured in the housing material, a top side of a first optoelectronic semiconductor chip is arranged in the cavity, the first optoelectronic semiconductor chip has a first electrical connection pad arranged at the top side of the first optoelectronic semiconductor chip, and electrically conductively connects by a bond wire to a first contact pad arranged at the top side of the carrier, a first section of the bond wire is arranged in the cavity and a second section of the bond wire is embedded the housing material, a covering material is arranged in the cavity and covers at least one part of the top side of the first optoelectronic semiconductor chip, and the first section of the bond wire is embedded in the covering material.
Abstract:
A method of producing optoelectronic semiconductor components includes providing a carrier with a carrier underside and a carrier top, wherein the carrier has a metallic core material and at least on the carrier top a metal layer and following this a dielectric mirror are applied to the core material, forming at least two holes through the carrier, producing a ceramic layer with a thickness of at most 150 μm at least on the carrier underside and in the holes, wherein the ceramic layer includes the core material as a component, applying metallic contact layers to at least subregions of the ceramic layer on the carrier underside and in the holes so that the carrier top electrically connects to the carrier underside through the holes, and applying at least one radiation-emitting semiconductor chip to the carrier top and electrical bonding of the semiconductor chip to the contact layers.