Abstract:
A method of producing a plurality of semiconductor chips includes a) providing a carrier substrate having a first major face and a second major face opposite the first major face; b) forming a diode structure between the first major face and the second major face, the diode structure electrically insulating the first major face from the second major face at least with regard to one polarity of an electrical voltage; c) arranging a semiconductor layer sequence on the first major face of the carrier substrate; and d) singulating the carrier substrate with the semiconductor layer sequence into a plurality of semiconductor chips.
Abstract:
A method of producing a laser chip includes providing a semiconductor wafer; creating a plurality of depressions arranged one behind another along a breaking direction on a top side of the semiconductor wafer, wherein 1) each depression includes a front boundary face and a rear boundary face successively in the breaking direction, 2) in at least one depression, the rear boundary face is inclined by an angle of 95° to 170° relative to the top side of the semiconductor wafer, 3) at least one depression includes a shoulder adjacent to the rear boundary face, and 4) the shoulder includes a shoulder face parallel to the top side of the semiconductor wafer and adjacent to the rear boundary face; and breaking the semiconductor wafer in the breaking direction at a breaking plane oriented perpendicularly to the top side of the semiconductor wafer and which runs through the depressions.
Abstract:
Method for producing semiconductor laser elements (1) comprises A) providing a carrier composite (20) having a plurality of carriers (2) for the semiconductor laser elements (1), B) providing a laser bar (30) having a plurality of semiconductor laser diodes (3) which comprise a common growth substrate (31) and a semiconductor layer sequence (32) grown thereon, C) generating predetermined breaking points (35) on a substrate underside (34) of the growth substrate (31), said substrate underside facing away from the semiconductor layer sequence (32), D) attaching the laser bar (30) to a carrier upper side (23) of the carrier composite (20), wherein the attachment is performed at an elevated temperature and is followed by cooling, and E) singulating into the semiconductor laser elements (1), wherein steps B) to E) are performed in the indicated sequence.
Abstract:
A method of producing a plurality of semiconductor chips includes a) providing a carrier substrate having a first major face and a second major face opposite the first major face; b) forming a diode structure between the first major face and the second major face, the diode structure electrically insulating the first major face from the second major face at least with regard to one polarity of an electrical voltage; c) arranging a semiconductor layer sequence on the first major face of the carrier substrate; and d) singulating the carrier substrate with the semiconductor layer sequence into a plurality of semiconductor chips.
Abstract:
A method of producing a laser chip includes providing a semiconductor wafer; creating a plurality of depressions arranged one behind another along a breaking direction on a top side of the semiconductor wafer, wherein 1) each depression includes a front boundary face and a rear boundary face successively in the breaking direction, 2) in at least one depression, the rear boundary face is inclined by an angle of 95° to 170° relative to the top side of the semiconductor wafer, 3) at least one depression includes a shoulder adjacent to the rear boundary face, and 4) the shoulder includes a shoulder face parallel to the top side of the semiconductor wafer and adjacent to the rear boundary face; and breaking the semiconductor wafer in the breaking direction at a breaking plane oriented perpendicularly to the top side of the semiconductor wafer and which runs through the depressions.
Abstract:
An optoelectronic semiconductor chip includes a carrier, a semiconductor body having an active region that generates and/or receives radiation, and an insulation layer wherein the semiconductor body is fastened on the carrier with a connecting layer; the carrier extends in a vertical direction between a first main surface facing toward the semiconductor body, and a second main surface facing away from the semiconductor body, and a lateral surface connects the first main surface and the second main surface to one another; a first region of the lateral surface of the carrier has an indentation; a second region of the lateral surface runs in the vertical direction between the indentation and the second main surface; the insulation layer at least partially covers each of the semiconductor body and the first region; and the second region is free of the insulation layer.
Abstract:
A method of producing a semiconductor body includes providing a semiconductor wafer having at least two chip regions and at least one separating region arranged between the chip regions, wherein the semiconductor wafer includes a layer sequence, an outermost layer of which has at least within the separating region a transmissive layer transmissive to electromagnetic radiation, carrying out at least one of removing the transmissive layer within the separating region before starting a separation process with help of a laser, applying an absorbent layer within the separating region, wherein the absorbent layer remains in the separation region during a subsequent separation process with help of a laser, and increasing the absorption coefficient of the transmissive layer within the separating region, and subsequently separating the chip regions along the separating regions by a laser.
Abstract:
A method of producing a semiconductor body includes providing a semiconductor wafer having at least two chip regions and at least one separating region arranged between the chip regions, wherein the semiconductor wafer includes a layer sequence, an outermost layer of which has at least within the separating region a transmissive layer transmissive to electromagnetic radiation, carrying out at least one of removing the transmissive layer within the separating region before starting a separation process with help of a laser, applying an absorbent layer within the separating region, wherein the absorbent layer remains in the separation region during a subsequent separation process with help of a laser, and increasing the absorption coefficient of the transmissive layer within the separating region, and subsequently separating the chip regions along the separating regions by a laser.
Abstract:
A method of producing a semiconductor body includes providing a semiconductor wafer having at least two chip regions and at least one separating region arranged between the chip regions, wherein the semiconductor wafer includes a layer sequence, an outermost layer of which has at least within the separating region a transmissive layer transmissive to electromagnetic radiation, carrying out at least one of removing the transmissive layer within the separating region before starting a separation process with help of a laser, applying an absorbent layer within the separating region, wherein the absorbent layer remains in the separation region during a subsequent separation process with help of a laser, and increasing the absorption coefficient of the transmissive layer within the separating region, and subsequently separating the chip regions along the separating regions by a laser.
Abstract:
A method relates to separating a component composite into a plurality of component regions, wherein the component composite is provided having a semiconductor layer sequence comprising a region for generating or for receiving electromagnetic radiation. The component composite is mounted on a rigid subcarrier. The component composite is separated into the plurality of component regions, wherein one semiconductor body is produced from the semiconductor layer sequence for each component region. The component regions are removed from the subcarrier.