Abstract:
An oversampling time-to-digital converter includes an input pulse generation circuit generating two pulse signals, a reference pulse generation circuit generating two pulse signals, a swap circuit swapping two pulse signals, a multiplexer selecting an output of the input pulse generation circuit or the swap circuit, a time-to-current conversion circuit outputting two pulse currents in accordance with an output of the multiplexer, a current mirror circuit whose input and output terminals receive the two pulse currents, an integration circuit integrating a differential current between the pulse current connected to the output terminal of the current mirror circuit and an output current of the current mirror circuit, and a comparison circuit comparing an output signal of the integration circuit to a threshold voltage. An output signal of the comparison circuit is given to the swap circuit as a control signal.
Abstract:
A time integrator integrates time axis information represented by a phase difference between two signals. The time integrator includes a pulse generation circuit configured to convert a time difference between edges of two input signals to a difference between pulse widths of two pulse signals, and to output the two pulse signals, a load circuit having load characteristics changed by the two pulse signals, and an oscillation circuit coupled to the load circuit, and having an oscillation frequency changing in accordance with the load characteristics of the load circuit. An output of the oscillation circuit is output as a result of time integration.
Abstract:
An edge detector includes flip-flops receiving phase signals of a ring oscillator, a resetter canceling the reset states of the flip-flops at the edge timing of an input signal, and a logical operator performing a logical operation on output signals of the flip-flops. A phase state detector detects a phase state of the ring oscillator occurring at the edge timing of the input signal based on the output signals of the flip-flops. A time-to-digital converter converts an edge interval between the input signal and an output signal of the logical operator into a digital value. A latch latches a value of a counter counting the number of cycles of an output signal of the ring oscillator, at the edge timing of the input signal. An operator calculates a digital value of a received signal from output signals of the latch, the phase state detector, and the time-to-digital converter.
Abstract:
A time-to-digital conversion circuit for converting a time difference between two input signals to a 1-bit digital value, and adjusting the time difference between the two input signals to generate two output signals includes: a phase comparator configured to compare phases of the two input signals with each other to generate the digital value; a phase selector configured to output one of the two input signals which has a leading phase as a first signal, and the other of the two input signals which has a lagging phase as a second signal; and a delay unit configured to output the first signal with a delay, wherein the time-to-digital conversion circuit outputs the signal output from the delay unit and the second signal as the two output signals.
Abstract:
An A/D converter having high accuracy and high throughput irrespective of characteristic variations of analog circuits is provided. The A/D converter includes a voltage-to-time converter configured to synchronize with a sampling clock signal and convert an input analog voltage to a time difference between two signals, and a plurality of time-to-digital converters each configured to convert the time difference between the two signals to a digital value. The plurality of time-to-digital converters operate in an interleaved manner.