摘要:
Fabricating a capacitor includes performing an oxide formation operation on a sheet of material. The oxide formation operation forms an anode metal oxide on an anode metal. A thermal compression is performed on the sheet of material after the oxide formation operation is performed. The thermal compression applies thermal energy to the sheet of material while applying pressure to the sheet of material. After the thermal compression, the capacitor is assembled such that at least one electrode in the capacitor includes at least a portion of the sheet of material.
摘要:
A cathode subassembly for use in an electrolytic capacitor may include a first separator sheet including a surface having first and second regions, where the second region extends from a perimeter of the first region to a first peripheral edge of the first sheet, a second peripheral edge of a second sheet is substantially aligned with the first peripheral edge, a conductive foil is sandwiched between the first and second sheets and disposed within the first region, the first and second sheets are adhered to each other in a sealing region extending from the second region to a region of a surface of the second sheet facing the second region, and the first sheet includes at least one first recess portion at the first peripheral edge aligned with at least one second recess portion at the second peripheral edge of the second sheet.
摘要:
Fabricating a capacitor includes forming conduits in a porous layer of material. The porous layer of material has particles that each includes a dielectric on a core. The formation of the conduits causes a portion of the dielectric to convert from a first phase to a second phase. The method also includes removing at least a portion of the second phase of the dielectric from the porous layer of material.
摘要:
A capacitor and a method of processing an anode metal foil are presented. The method includes electrochemically etching the metal foil to form a plurality of tunnels. Next, the etched metal foil is disposed within a widening solution to widen the plurality of tunnels. Exposed surfaces of the etched metal foil are then oxidized. The method includes removing a section of the etched metal foil, where the section of the etched metal foil includes exposed metal along an edge. The section of the etched metal foil is placed into a bath comprising water to form a hydration layer over the exposed metal on the section of the etched metal foil. The method also includes assembling the section of the etched metal foil having the hydration layer as an anode within a capacitor.
摘要:
A method of producing an electrode for use in the manufacture of electrolytic capacitors for implantable cardioverter defibrillators comprises first growing a hydrate layer and/or formed oxide layers of the foil, applying a laser beam to portions of the foil to ablate the aluminum oxide foil surface before etching in order to induce etching in the specific areas, and then, etching the foil. The laser marks the oxide layer in a pulsed spot pattern through the hydrate layer and/or formed oxide layer leaving a dimpled nascent aluminum surface. The oxide layer left behind is a mask and the fresh aluminum areas are the high etching activation sites. After marking the aluminum oxide foil surface, the foil may be electrochemically etched in an electrolyte containing chloride and/or various oxidative species.
摘要:
The present invention is directed to a method of etching anode foil in a non-uniform manner which minimizes thermal oxidation during foil cutting. Having less oxide improves the ability to cut through aluminum anodes with lower energy rates. In aluminum foils, it has been found that a masking step before etching reduces conversion of boehmite aluminum oxide to alpha-phase corundum during laser cutting of anodes, which increases edge quality and productivity. Additionally, the non-etched anode frame allows for less surface area to form during the aging process. As a result, the leakage current is reduced by the proportion of edge to anode surface area, and the aging process will be faster, leading to higher productivity.
摘要:
A capacitor and methods of processing an anode metal foil are presented. The capacitor includes a housing, one or more anodes disposed within the housing, one or more cathodes disposed within the housing, one or more separators disposed between an adjacent anode and cathode, and an electrolyte disposed around the one or more anodes, one or more cathodes, and one or more separators within the housing. The one or more anodes each include a metal foil that includes a first plurality of tunnels through a thickness of the metal foil in a first ordered arrangement, the first ordered arrangement being a close packed hexagonal array arrangement, and having a first diameter, and a second plurality of tunnels through the thickness of the metal foil having a second ordered arrangement and a second diameter greater than the first diameter.
摘要:
Methods are presented that includes replacing oven depolarization of a foil with a sonic vibration process for stressing the oxide. The method includes electrochemically etching the metal foil to form a plurality of tunnels in the metal foil and forming an oxide on a surface of the metal foil. The method further includes applying sonic vibration to the metal foil to induce stress fractures in the oxide, and reforming the oxide to heal at least a portion of the stress fractures.
摘要:
A method for patterning a metal substrate includes a series of surface treatments to control tunnel initiation at a micron or sub-micron level. In particular, the series of surface treatments include forming a hydration layer which acts as a mask while etching the surface of the metal substrate. The hydration layer mask enables control of the tunnel initiation on a micron or sub-micron level because the etching does not undercut the interface between the metal substrate and the hydration layer. As a result, the tunnels can be initiated in an orthogonal direction and closer together, thereby increasing the tunnel density.
摘要:
Electrode foils suitable for use in electrolytic capacitors, including those having multiple configurations, have improved strength, reduced brittleness, and increased capacitance compared to conventional anode foils for electrolytic capacitors. Exemplary methods of manufacturing an anode foil suitable for use in an electrolytic capacitor include forming a pattern of etch resist on a surface of a substrate; etching a first area of the surface substantially enclosed by the pattern and a second area in intervals between the pattern to form tunnels in first and second areas of the surface; and removing the resist material revealing a non-etched frame. The resist material may be deposited, for example, by ink-jet printing, stamping or screen printing. Additionally, an etch resist pattern may be used to form strength lines on the substrate surface.