Abstract:
A semiconductor device includes a metal plate capacitor that includes a heat-resistant metal plate and a capacitor unit including a sintered dielectric formed on at least one surface of the heat-resistant metal plate, a semiconductor chip disposed on the metal plate capacitor, a connector configured to electrically connect the semiconductor chip and the metal plate capacitor, and a protector configured to protect the semiconductor chip, the metal plate capacitor, and the connector.
Abstract:
An energy-harvesting device includes a power generating element configured to generate electric power, a storage capacitor configured to store the electric power generated by the power generating element, a DC/DC converter configured to convert, into a predetermined voltage, a voltage obtained from the electric power generated by the power generating element and the electric power stored in the storage capacitor, a delay section for delaying a voltage corresponding to a voltage across the storage capacitor, and a controller configured to output an activating signal that activates the DC/DC converter when the delayed voltage is higher than a reference voltage. The energy-harvesting device thus can produce a necessary voltage and power.
Abstract:
Provided is a power generation device that restrains interference between a plurality of flows of alternating current power if the flows of alternating current power are generated in the power generation device. The power generation device includes a housing, a first power generator held in the housing so as to be allowed to vibrate, and a second power generator held in the housing so as to be allowed to vibrate. The second power generator is electrically isolated from the first power generator.
Abstract:
Jitter that becomes a problem in a semiconductor part which performs high-speed signal processing is reduced. A semiconductor device includes a heat-resistant metal plate, a capacitor part having a lower electrode, a sintered dielectric part, and an upper electrode that are formed on one or more surfaces of the heat-resistant metal plate, a semiconductor chip fixed on the capacitor part, a wire for electrically connecting a lead frame to the semiconductor chip and the upper electrode, and a mold part in which at least the capacitor part and the semiconductor chip are buried. The semiconductor chip, the electrode, the metal plate, and the like are electrically connected with each other via first, second, and third wires.
Abstract:
A power-generating device includes a vibration plate, a lower electrode on the vibration plate, a piezoelectric layer made of piezoelectric material on the lower electrode, and an upper electrode on the piezoelectric layer, a fixing member for supporting a fixed end of the vibration plate. The vibration plate applies compressive stress to the piezoelectric layer when the vibration plate does not vibrate. The power generating device is excellent in long-term reliability.