Abstract:
A coil structure includes a conductor band and a first insulating plate. The conductor band turns around a coil axis in such a manner that the conductor band folds at a plurality of portions which form a plurality of folded portions. The first insulating plate includes a first edge portion which abuts along at least one of the plurality of folded portions. At least part of the conductor band is wound around the first insulating plate.
Abstract:
A rotary machine includes a rotor, a stator, a first hole and a second hole that are provided in at least one selected from the group consisting of the rotor and the stator, and a first insertion member including a first protrusion inserted into the first hole, a second protrusion inserted into the second hole, and a first connection connecting the first protrusion and the second protrusion to each other. A distance between the first hole and the second hole differs from a length of the first connection.
Abstract:
A switching circuit according to an aspect of the present disclosure includes: a full-bridge circuit including a first leg that includes a first switch and a second switch, and a second leg that includes a third switch and a fourth switch; and a control circuit operative to (a) output a first control signal group that changes the first leg into a state in which the third switch is off and the fourth switch is on after changing the first leg into a state in which the first switch is on and the second switch is off, and (b) output a second control signal group that changes the second leg into a state in which the third switch is off and the fourth switch is on before changing the first leg into a state in which the first switch is on and the second switch is off.
Abstract:
A magnetic component includes a first winding and a second winding which is insulated from the first winding and magnetically couples with the first winding. The first winding forms a first coil unit by being wound. The second winding forms a second coil unit by being wound about the same axis as the first winding. The second winding forming the second coil unit is disposed in areas X and Z. The magnetic component has the first coil unit and the second coil unit at positions that satisfy Equations 1 and 3.
Abstract:
A coil structure includes: a magnetic core that defines a closed loop magnetic path in which a magnetic flux flows, the magnetic core including a core leg; a coil that is wound around the core leg about a coil axis extending in a first direction, the coil generating the magnetic flux; a detour member that is separate from the magnetic core, the detour member defining a detour magnetic path that detours around the closed loop magnetic path between first and second points, the detour member including a first piece that defines the first point and a second piece that defines the second point; and a fixing portion that includes an adjoining member adjoining the core leg and a connecting portion connecting at least one of the first piece and the second piece to the adjoining member and fixes positional relations among the core leg and the first and second points.
Abstract:
A magnetic device includes a winding, and insulators by which the winding is surrounded. Each of the insulators is in contact with the winding. A gap exists between each two adjacent of the insulators in a winding direction of the winding.
Abstract:
A power conversion device includes a first detection circuit that acquires input information about an AC voltage and/or an alternating current which are inputted to the power conversion device from an AC power supply, a rectifier circuit, an inverter circuit including a switch, and a control circuit that generates a pulse signal for the switch while the control circuit (A) determines, based on the input information, whether the rectifier circuit is in a state in which the rectifier circuit allows switching noise to propagate from the switch to the AC power supply and (B) changes a frequency of the pulse signal with time at least in a period in which the rectifier circuit is in the state.
Abstract:
An electric generator includes a magnetic flux generating unit that generates a magnetic flux, a rotation unit that rotates about a rotation axis, and an induction coil unit including a winding. The magnetic flux generating unit, the rotation unit, and the induction coil unit are arranged along the rotation axis. The rotation unit is disposed between the magnetic flux generating unit and the induction coil unit. The rotation unit includes a magnetic flux changing part. The magnetic flux changing part passes across a space through which the magnetic flux linked to the winding passes, by a rotation of the rotation unit. A density of the magnetic flux linked to the winding is changed by the magnetic flux changing part passing across the space. An electromotive force is induced in the induction coil unit in accordance with the change in the density of the magnetic flux linked to the winding.
Abstract:
Disclosed is a coil structure including: a first coil that is a first primary coil; a second coil that is a second primary coil; a first core around which the first coil is wound, the first core having an annular shape; a second core around which the second coil is wound, the second core having an annular shape; and a third coil that is a secondary coil, the first core including a first penetrating section that penetrates the third coil, the second core including a second penetrating section that penetrates the third coil, the first penetrating section being separated from the second penetrating section.