Abstract:
An optical attenuator and/or optical terminator is provided. The device includes an optical channel having two regions with different optical properties, such as an undoped silicon region which is less optically absorptive and a doped silicon region which is more optically absorptive. Other materials may also be used. A facet at the interface between the two regions is oriented at a non-perpendicular angle relative to a longitudinal axis of the channel. The angle can be configured to mitigate back reflection. Multiple facets may be included between different pairs of regions. The device may further include curved and/or tapers to further facilitate attenuation and/or optical termination.
Abstract:
A coherent LIDAR method and apparatus are provided, in which two optical signals having a first frequency difference are reflected by an object. A difference in frequency between the corresponding received and reflected signals is determined. The frequency difference between the reflected signals differs from the first frequency difference due to Doppler effects. The object velocity is determined based on a comparison between the first frequency difference and the frequency difference in the reflected signals. The emitted signals can be produced by modulating a common light source. The reflected signals are inherently mixed at the receiver and further processed. Distance to the object can be determined by pulsing the emitted signals and measuring a time of flight by detecting corresponding pulse edges in the reflected signals, or by using phase sweeping. The emitter can be implemented using an optical phased array.
Abstract:
A waveguide crossing includes a first waveguide and a second waveguide intersecting the first waveguide such that a gap equal to a width of the second waveguide is formed in the first waveguide, the second waveguide having a centerline defining a plane of symmetry. The first waveguide has a first waveguide section through which a single optical mode propagates, followed by a first non-adiabatic diverging taper, followed by a second waveguide section wider than the first waveguide section through which two even-order optical modes propagate, followed by a second non-adiabatic diverging taper, followed by a third waveguide section wider than the second waveguide section through which three even-order optical modes propagate. The three even-order modes synthesize to form a quasi-Gaussian beam that self-replicates symmetrically across the gap, thereby providing a low-loss waveguide crossing useful for photonic switching.
Abstract:
Aspects of the disclosure provide a system and method used for time-of-flight lidar applications. Such systems and methods include a laser and pulse clipper which produces a shuttering effect to reduce the instantaneous output power from the pulse clipper. Accordingly the output from the pulse clipper is more suitable for time-of-flight lidar applications than that initially produced by the laser. This can allow for lasers which may otherwise exceed eye safety limits to be used for time-of-flight lidar applications without exceeding the eye safety limits.
Abstract:
An optical performance monitor comprises a first stage configured to receive a multiplexed optical signal. The first stage is tunable over a period. The first stage periodically filters the multiplexed optical signal over an optical channel to produce a fine filtered optical signal. A second stage is coupled to the first stage and has a second-stage transfer function. The second stage receives the fine filtered optical signal and produces one or a plurality of interfered optical signal pairs. A third stage is coupled to the second stage and has a third-stage transfer function. The third stage receives the optical signal pairs and demultiplexes the optical signal pairs to produce a plurality of demultiplexed optical signals. The combination of the second-stage transfer function and the third-stage transfer function is flatter over the optical channel than the third-stage transfer function.
Abstract:
An optical waveguide termination comprising a light-receiving inlet for receiving light to be terminated, a curved section extending from the inlet and having a continuously decreasing radius of curvature, and a light-terminating tip at an end of the curved section. The curved section may define a spiral waveguide, for example a logarithmic spiral, having a waveguide width that continuously decreases from the inlet to the tip.
Abstract:
The invention provides a method for fabricating planar waveguiding structures with embedded microchannels. The method includes the step of depositing, over a planar template having at least one indented feature comprising a ridge of a first optical material and a narrow trench adjacent thereto, a second optical material, and the step of subsequent annealing thereof, so that an embedded hollow microchannel forms within the trench. The method provides planar structures wherein the ridge and the embedded microchannel cooperate to form an optical waveguiding structure having a waveguiding direction collinear with the embedded microchannel. Embodiments of the method for forming microfluidic devices integrating ridge waveguides with hollow microchannels having surface access points for fluid delivery, and for forming photonic crystals, are disclosed together with corresponding device embodiments.
Abstract:
The present invention provides a photonic device such as a variable optical attenuator, in which two signal components, propagating in modes of two different polarization states, are converted to two different modes of the same polarization state prior to modulation. The modulation of both components is performed by a single device which applies the same modulation strength to both components. The two signal components can be converted back to propagate in the two different polarization states following modulation.
Abstract:
An optical waveguide termination includes a light-receiving inlet for receiving light to be terminated, a rib waveguide extending from the inlet, a doped, light-absorbing slab supporting the rib waveguide for absorbing light from the rib waveguide, and a tip at an end of the rib waveguide. The optical waveguide termination exhibits low back-reflection.
Abstract:
An optical coupling apparatus for coupling an optical fiber to a photonic chip is described. The apparatus includes a collimating microlens for collimating light from the optical fiber; a polarization splitting beam displacer for separating the light collimated by the collimating microlens into orthogonally polarized X and Y component beams; at least one focusing microlens for directing the X and Y component beams separately onto the photonic chip; and first and second surface grating couplers (SGCs) orthogonally disposed on the photonic chip and configured for operation in a same polarization state, for coupling the X and Y component beams, respectively, to the photonic chip.