摘要:
The present invention relates to an apparatus and method of forming one or more FETs having a vertical trench-formed double-gate, with a plurality of nitride layers having oxide marker etch-stop layers provided periodically there-through, thereby adapting the FETs to have a plurality of selectable gate lengths. The present invention provides for control and formation of gate lengths scaled down to about 5 nm to about 100 nm, preferably from about 5 nm to about 50 nm. The plurality of pad nitride layers with the oxide etch-stop layers provide for the present FET to be connected to a plurality of contacts having a variety of connection depths corresponding to the gate lengths used, by etching a plurality of via in the pad nitride layers whereby such vias stop at selected ones of the etch-stop layers to provide vias adapted to connect with the selected ones of such contacts. Additional gate material may be deposited over a top surface of the selected plurality of nitride layers to allow for contacts to the gate electrodes of any given FET.
摘要:
A shorter gate length FET for very large scale integrated circuit chips is achieved by providing a wafer with multiple threshold voltages. Multiple threshold voltages are developed by combining multiple work function gate materials. The gate materials are geometrically aligned in a predetermined pattern so that each gate material is adjacent to other gate materials. A patterned linear array embodiment is developed for a multiple threshold voltage design. The method of forming a multiple threshold voltage FET requires disposing different gate materials in aligned trenches within a semiconductor wafer, wherein each gate material represents a separate work function. The gate materials are arranged to be in close proximity to one another to accommodate small gate length designs.
摘要:
A shorter gate length FET for very large scale integrated circuit chips is achieved by providing a wafer with multiple threshold voltages. Multiple threshold voltages are developed by combining multiple work function gate materials. The gate materials are geometrically aligned in a predetermined pattern so that each gate material is adjacent to other gate materials. A patterned linear array embodiment is developed for a multiple threshold voltage design. The method of forming a multiple threshold voltage FET requires disposing different gate materials in aligned trenches within a semiconductor wafer, wherein each gate material represents a separate work function. The gate materials are arranged to be in close proximity to one another to accommodate small gate length designs.
摘要:
A method for forming a thermally stable ohmic contact structure that includes a region of monocrystalline semiconductor and a region of polycrystalline semiconductor. At least one region of dielectric material is formed between at least a portion of the region of monocrystalline semiconductor and the region of polycrystalline semiconductor, thereby controlling grain growth of the polycrystalline semiconductor.
摘要:
A process for fabrication of both compact memory and high performance logic on the same semiconductor chip. The process comprises forming a memory device in the memory region, forming a spacer nitride layer and a protective layer over both the memory region and the logic region, removing the protective layer over the logic region to expose the substrate, and forming the logic device in the logic region. Cobalt or titanium metal is applied over all horizontal surfaces in the logic region and annealed, forming a salicide where the metal rests over silicon or polysilicon regions, and any unreacted metal is removed. An uppermost nitride layer is then applied over both the memory and logic regions and is then covered with a filler in the logic region. Chip structures resulting from various embodiments of the process are also disclosed.
摘要:
A process for fabrication of both compact memory and high performance logic on the same semiconductor chip. The process comprises forming a memory device in the memory region, forming a spacer nitride layer and a protective layer over both the memory region and the logic region, removing the protective layer over the logic region to expose the substrate, and forming the logic device in the logic region. Cobalt or titanium metal is applied over all horizontal surfaces in the logic region and annealed, forming a salicide where the metal rests over silicon or polysilicon regions, and any unreacted metal is removed. An uppermost nitride layer is then applied over both the memory and logic regions and is then covered with a filler in the logic region. Chip structures resulting from various embodiments of the process are also disclosed.
摘要:
A method that includes forming a pattern of strained material and relaxed material on a substrate; forming a strained device in the strained material; and forming a non-strained device in the relaxed material is disclosed. In one embodiment, the strained material is silicon (Si) in either a tensile or compressive state, and the relaxed material is Si in a normal state. A buffer layer of silicon germanium (SiGe), silicon carbon (SiC), or similar material is formed on the substrate and has a lattice constant/structure mis-match with the substrate. A relaxed layer of SiGe, SiC, or similar material is formed on the buffer layer and places the strained material in the tensile or compressive state. In another embodiment, carbon-doped silicon or germanium-doped silicon is used to form the strained material. The structure includes a multi-layered substrate having strained and non-strained materials patterned thereon.
摘要:
A device is provided that includes memory, logic and capacitor structures on a semiconductor-on-insulator (SOI) substrate. In one embodiment, the device includes a semiconductor-on-insulator (SOI) substrate having a memory region and a logic region. Trench capacitors are present in the memory region and the logic region, wherein each of the trench capacitors is structurally identical. A first transistor is present in the memory region in electrical communication with a first electrode of at least one trench capacitor that is present in the memory region. A second transistor is present in the logic region that is physically separated from the trench capacitors by insulating material. In some embodiments, the trench capacitors that are present in the logic region include decoupling capacitors and inactive capacitors. A method for forming the aforementioned device is also provided.
摘要:
A dual node dielectric trench capacitor includes a stack of layers formed in a trench. The stack of layers include, from bottom to top, a first conductive layer, a first node dielectric layer, a second conductive layer, a second node dielectric layer, and a third conductive layer. The dual node dielectric trench capacitor includes two back-to-back capacitors, which include a first capacitor and a second capacitor. The first capacitor includes the first conductive layer, the first node dielectric layer, the second conductive layer, and the second capacitor includes the second conductive layer, the second node dielectric layer, and the third conductive layer. The dual node dielectric trench capacitor can provide about twice the capacitance of a trench capacitor employing a single node dielectric layer having a comparable composition and thickness as the first and second node dielectric layers.
摘要:
A method is provided for fabricating an electrical fuse and a field effect transistor having a metal gate which includes removing material from first and second openings in a dielectric region overlying a substrate, wherein the first opening is aligned with an active semiconductor region of the substrate, and the second opening is aligned with an isolation region of the substrate, and the active semiconductor region including a source region and a drain region adjacent edges of the first opening. An electrical fuse can be formed which has a fuse element filling the second opening, the fuse element being a monolithic region of a single conductive material being a metal or a conductive compound of a metal. A metal gate can be formed which extends within the first opening to define a field effect transistor (“FET”) which includes the metal gate and the active semiconductor region.