Abstract:
A memory device including a metallic layer shielding electromagnetic radiation and/or dissipating heat, and a method of making the memory device, are disclosed. The metallic layer is formed on a metallic layer transfer assembly. The metallic layer transfer assembly and the unencapsulated memory device are placed in a mold and encapsulated. During the encapsulation and curing of the molding compound, the metallic layer is transferred from the shield to the encapsulated memory device.
Abstract:
A semiconductor package is disclosed including a substrate, a solder mask layer, one or more semiconductor die mounted to the solder mask layer and electrically coupled to the substrate, and a glob top cover over the semiconductor die. The solder mask further includes a dam protruding above surrounding areas of the solder mask layer and a cavity recessed into the solder mask layer for limiting flow of the glob top cover when the glob top material is applied.
Abstract:
A memory device including a metallic layer shielding electromagnetic radiation and/or dissipating heat, and a method of making the memory device, are disclosed. The metallic layer is formed on a metallic layer transfer assembly. The metallic layer transfer assembly and the unencapsulated memory device are placed in a mold and encapsulated. During the encapsulation and curing of the molding compound, the metallic layer is transferred from the shield to the encapsulated memory device.
Abstract:
A memory device is disclosed including at least one surface pre-treated to roughen the surface for better adhesion of a curable fluid such as glue or ink on the surface. The surface of the memory device may be pre-treated by scoring lines in the surface with a laser or by forming discrete deformations with a particle blaster. The surface may also be roughened by providing a roughened pattern on a mold plate during an encapsulation process. In further examples, the surface may be chemically pre-treated to roughen the surface and/or increase the adhesion energy of the surface.
Abstract:
A material composition, which is used as a liquid resist, includes a first component comprising a monomer portion and at least one cationically polymerizable functional group, and a crosslinker reactive with the first component and comprising at least three cationically polymerizable functional groups. The material composition also includes a cationic photoinitiator. Upon exposure to UV light, the material composition crosslinks via cure to form a cured resist film that is the reaction product of the first component, the crosslinker, and the cationic photoinitiator. An article includes a substrate layer and a resist layer formed on the substrate layer from the material composition.
Abstract:
A method of nanopatterning includes the steps of providing a resist film (12) and forming a pattern in the resist film (12). The resist film (12) includes a copolymer consisting of an organosilicone component and an organic component. An article (10) includes a substrate (14) and the resist film (12) disposed on the substrate (14). The copolymer of the organosilicone component and the organic component is sufficiently elastic, due to the presence of the organosilicone component, to be capable of resisting fracture and delamination during mold release. Furthermore, during pattern formation, the copolymer develops relatively low surface energy at an interface with the surface of a mold, as compared to conventional polymeric materials, and preferentially adheres to the substrate (14) rather than the mold, which provides for relatively easy mold release. The presence of the organosilicone component in the copolymer also allows the resist film (12) to exhibit excellent resistance to oxygen plasma etching.
Abstract:
Embodiments of the inventions include a gamepad that supports an internal mapping system. A user may remap functions associated with any input mechanism of the gamepad to any other input mechanism. The gamepad may include extra, non-standard, input mechanisms. Mapping may be stored internal to the gamepad.
Abstract:
A memory device is disclosed including at least one surface pre-treated to roughen the surface for better adhesion of ink on the surface. The surface of the memory device may be pre-treated by scoring lines in the surface with a laser or by forming discrete deformations with a particle blaster. The surface may also be roughened by providing a roughened pattern on a mold plate during an encapsulation process. In further examples, the surface may be chemically pre-treated to roughen the surface and/or increase the adhesion energy of the surface.