摘要:
A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The device includes an insulator layer; a semiconductor substrate, having an interface with the insulator layer; an epitaxial layer grown on the semiconductor substrate by epitaxial growth; and one or more imaging components in the epitaxial layer in proximity to a face of the epitaxial layer, the face being opposite the interface of the semiconductor substrate and the insulator layer, the imaging components comprising junctions within the epitaxial layer; wherein the semiconductor substrate and the epitaxial layer exhibit a net doping concentration having a maximum value at a predetermined distance from the interface of the insulating layer and the semiconductor substrate and which decreases monotonically on both sides of the profile from the maximum value within a portion of the semiconductor substrate and the epitaxial layer. The doping profile between the interface with the insulation layer and the peak of the doping profile functions as a “dead band” to prevent dark current carriers from penetrating to the front side of the device.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The method for manufacturing the imaging device includes the steps of providing a substrate comprising an insulator layer, and an epitaxial layer substantially overlying the insulator layer; fabricating at least one imaging component at least partially overlying and extending into the epitaxial layer; forming a plurality of bond pads substantially overlying the epitaxial layer; fabricating a dielectric layer substantially overlying the epitaxial layer and the at least one imaging component; providing a handle wafer; forming a plurality of conductive trenches in the handle wafer; forming a plurality of conductive bumps on a first surface of the handle wafer substantially underlying the conductive trenches; and bonding the plurality of conductive bumps to the plurality of bond pads.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The method for manufacturing the imaging device includes the steps of providing a substrate comprising an insulator layer, and an epitaxial layer substantially overlying the insulator layer; fabricating at least one imaging component at least partially overlying and extending into the epitaxial layer; forming a plurality of bond pads substantially overlying the epitaxial layer; fabricating a dielectric layer substantially overlying the epitaxial layer and the at least one imaging component; providing a handle wafer; forming a plurality of conductive trenches in the handle wafer; forming a plurality of conductive bumps on a first surface of the handle wafer substantially underlying the conductive trenches; and bonding the plurality of conductive bumps to the plurality of bond pads.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device and resulting imaging device is disclosed, which includes the steps providing a substrate having a front surface and a back surface; growing an epitaxial layer substantially overlying the front surface of the substrate; forming at least one barrier layer substantially within the epitaxial layer; fabricating at least one imaging structure overlying and extending into the epitaxial layer, the imaging structure at least one charge transfer region, the at least one barrier layer substantially underlying the at least one charge transfer region, wherein light incident on the back surface of the substrate generates charge carriers which are diverted away from the at least one charge transfer region by the at least one barrier layer. At least a portion of the epitaxial layer is grown using an epitaxial lateral overgrowth technique. The barrier layer can be a high energy implant formed substantially within the epitaxial layer, an optical shield made of an optically opaque material surrounded by oxide on all sides, or a combination of both. The imaging structure can be a CCD or CMOS imaging structure.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. A substrate which includes an insulator layer and an epitaxial layer substantially overlying the insulator layer is provided. At least one bond pad region is formed extending into the epitaxial layer to a surface of the insulator layer. At least one bond pad is fabricated at least partially overlying the at least one bond pad region. At least one imaging component is fabricated at least partially overlying and extending into the epitaxial layer. A passivation layer is fabricated substantially overlying the epitaxial layer, the at least one bond pad, and the at least one imaging component. A handle wafer is bonded to the passivation layer. The at least a portion of the insulator layer and at least a portion of the bond pad region is etched to expose at least a portion of the at least one bond pad.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The method for manufacturing the imaging device includes the steps of providing a substrate comprising an insulator layer, and an epitaxial layer substantially overlying the insulator layer; fabricating at least one imaging component at least partially overlying and extending into the epitaxial layer; forming a plurality of bond pads substantially overlying the epitaxial layer; fabricating a dielectric layer substantially overlying the epitaxial layer and the at least one imaging component; providing a handle wafer; forming a plurality of conductive trenches in the handle wafer; forming a plurality of conductive bumps on a first surface of the handle wafer substantially underlying the conductive trenches; and bonding the plurality of conductive bumps to the plurality of bond pads.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The method for manufacturing the imaging device includes the steps of providing a substrate comprising an insulator layer, and an epitaxial layer substantially overlying the insulator layer; fabricating at least one imaging component at least partially overlying and extending into the epitaxial layer; forming a plurality of bond pads substantially overlying the epitaxial layer; fabricating a dielectric layer substantially overlying the epitaxial layer and the at least one imaging component; providing a handle wafer; forming a plurality of conductive trenches in the handle wafer; forming a plurality of conductive bumps on a first surface of the handle wafer substantially underlying the conductive trenches; and bonding the plurality of conductive bumps to the plurality of bond pads.
摘要:
The described embodiments may provide a chemical detection circuit with an improved signal-to-noise ration. The chemical detection circuit may include a current source, a chemical detection pixel, an amplifier and a capacitor. The chemical detection pixel may comprise a chemical-sensitive transistor that may have a first and second terminals and a row-select switch coupled between the current source and chemically-sensitive transistor. The amplifier may have a first input and a second input, with the first input coupled to an output of the chemically-sensitive transistor via a switch and the second input coupled to an offset voltage line. The capacitor may be coupled between an output of the amplifier and the first input of the amplifier. The capacitor and amplifier may form an integrator and may be shared by a column of chemical detection pixels.
摘要:
A method for fabricating a back-illuminated semiconductor imaging device and resulting imaging device is disclosed, which includes the steps providing a substrate having a front surface and a back surface; growing an epitaxial layer substantially overlying the front surface of the substrate; forming at least one barrier layer substantially within the epitaxial layer; fabricating at least one imaging structure overlying and extending into the epitaxial layer, the imaging structure at least one charge transfer region, the at least one barrier layer substantially underlying the at least one charge transfer region, wherein light incident on the back surface of the substrate generates charge carriers which are diverted away from the at least one charge transfer region by the at least one barrier layer. At least a portion of the epitaxial layer is grown using an epitaxial lateral overgrowth technique. The barrier layer can be a high energy implant formed substantially within the epitaxial layer, an optical shield made of an optically opaque material surrounded by oxide on all sides, or a combination of both. The imaging structure can be a CCD or CMOS imaging structure.
摘要:
A well-controlled serum study set (n=248) from women being followed and evaluated for the presence of ovarian cancer was used to extend serum proteomic pattern analysis to a higher resolution mass spectrometer instrument platform to explore the existence of multiple distinct highly accurate diagnostic sets of features present in the same mass spectrum. Multiple highly accurate diagnostic proteomic feature sets exist within human sera mass spectra. Using high-resolution mass spectral data, at least 56 different patterns were discovered that achieve greater than 85% sensitivity and specificity in testing and validation. Four of those feature sets exhibited 100% sensitivity and specificity in blinded validation. The sensitivity and specificity of diagnostic models generated from high-resolution mass spectral data were superior (P