Abstract:
Various embodiments of a micro-disc modulator as well as a silicon photonic device and an optoelectronic communication apparatus using the micro-disc modulator are described. In one aspect, a device includes a SOI substrate and a silicon photonic structure formed on a primary surface of the SOI substrate. The semiconductor substrate includes a silicon waveguide and a micro-disc modulator. The micro-disc modulator is adjacent to the silicon waveguide and has a top surface substantially parallel to the primary surface of the SOI substrate. The top surface of the micro-disc modulator includes one or more discontinuities therein. The micro-disc modulator may be a multi junction micro-disc modulator having two vertical p-n junctions with a single resonance frequency to achieve high-speed modulation and low-power consumption.
Abstract:
A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
Abstract:
A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
Abstract:
A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
Abstract:
A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
Abstract:
A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
Abstract:
A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
Abstract:
Various embodiments of a micro-disc modulator as well as a silicon photonic device and an optoelectronic communication apparatus using the micro-disc modulator are described. In one aspect, a device includes a SOI substrate and a silicon photonic structure formed on a primary surface of the SOI substrate. The semiconductor substrate includes a silicon waveguide and a micro-disc modulator. The micro-disc modulator is adjacent to the silicon waveguide and has a top surface substantially parallel to the primary surface of the SOI substrate. The top surface of the micro-disc modulator includes one or more discontinuities therein. The micro-disc modulator may be a multi junction micro-disc modulator having two vertical p-n junctions with a single resonance frequency to achieve high-speed modulation and low-power consumption.