Abstract:
There is provided a remote control system including a controlled device and a remote device. The controlled device has a light source and moves according to a control signal from the remote device. The remote device is adapted to be operated by a user and includes an image sensor. The remote device determines a moving direction of the controlled device according to an imaging position of the light source in the image captured by the image sensor and a pointing position of the user, and outputs the control signal.
Abstract:
A system and method based on hybrid biometric detection capture first images of a user that is projected by first light of different wavelengths, extract various biometric informations from the first images, analyze and compare for each of the biometric informations to generate a matching score, determine an identity for the user according to all of the matching scores, generate second images and PPG signals from dispensed second light from the user, generate a time and PPG variation signal and a space and PPG variation signal for each frame of the second images, convert the time and PPG variation signals into frequency domain signals, determine a reference frequency according to the space and PPG variation signals, retrieve energy of the frequency domain signals at the reference frequency, and establish a three-dimensional energy distribution from the retrieved energy.
Abstract:
A gesture recognition method with improved background suppression includes the following steps. First, a plurality of images are sequentially captured. Next, a position of at least one object in each of the images is calculated to respectively obtain a moving vector of the object at different times. Then, an average brightness of the object in each of the images is calculated. Finally, magnitudes of the moving vectors of the object at different times are respectively adjusted according to the average brightness of the object in each of the images. There is further provided a gesture recognition apparatus using the method mentioned above.
Abstract:
A packaged optical device includes a package frame having a compartment and an opening, a sensor chip bonded in the compartment, and a non-lens transparency layer embedded in the package frame at the opening and sealing up the opening. This package structure could prevent the sensor chip from adhesion of suspended particles or other contaminations, and simply the assembly process, thereby improving reliability and reducing cost of the packaged optical device.
Abstract:
There is provided a user interface system including a slave device and a master device. The slave device provides light of two different wavelengths to illuminate a finger surface, receives reflected light from the finger surface to generate a plurality of image frames, calculates and outputs an image data associated with a predetermined number of the image frames. The master device calculates a contact status and a displacement of the finger surface and a physiological characteristic of a user according to the image data.
Abstract:
A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
Abstract:
A displacement detection device includes an image sensor, a light source and a processing unit. The image sensor is configured to successively capture images. The light source provides light with an emission frequency and an emission duration for the image sensor in capturing the images. The processing unit is configured to calculate a displacement according to the images and to adjust both the emission frequency and the emission duration according to the displacement.
Abstract:
An identity recognition system and method capture an image of a subject that is projected by light of different wavelengths, extract various biometric informations from the image, analyze and compare for each of the biometric informations to generate a matching score, and determine an identity for the subject according to all of the matching scores. The system and method have higher recognition accuracy, lower false acceptance rate, lower false rejection rate, and higher flexibility.
Abstract:
There is provided an image sensor employing an avalanche diode. The image sensor includes a plurality of pixel circuits arranged in a matrix, a plurality of pulling circuits, a plurality of output circuits and a global current source circuit. Each of the plurality of pixel circuits includes a single photon avalanche diode and a P-type or N-type select switch transistor. Each of the plurality of pulling circuits is arranged corresponding to one pixel circuit column. The global current source circuit is used to form a current mirror with each of the plurality of pulling circuits. Each of the plurality of output circuits is shared by at least two pixel circuits.
Abstract:
There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.