摘要:
A light emitting device includes an active layer configured to provide light emission due to carrier recombination therein, a surface on the active layer, and an electrically conductive contact structure on the surface. The contact structure includes at least one plated contact layer. The contact structure may include a sublayer that conforms to the surface roughness of the underlying surface, and the plated contact layer may be substantially free of the surface roughness of the underlying surface. The surface of the plated contact layer may be substantially planar and/or otherwise configured to reflect the light emission from the active layer. Related fabrication methods are also discussed.
摘要:
A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a substrate selected from the group consisting of semiconducting and conducting materials, a Group III nitride-based light emitting region on or above the substrate, and, a lenticular surface containing silicon carbide on or above the light emitting region.
摘要:
A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a substrate selected from the group consisting of semiconducting and conducting materials, a Group III nitride-based light emitting region on or above the substrate, and, a lenticular surface containing silicon carbide on or above the light emitting region, and extending to said light emitting region.
摘要:
A light emitting diode is disclosed that includes a conductive substrate, a bonding metal on the conductive substrate and a barrier metal layer on the bonding metal. A mirror layer is encapsulated by the barrier metal layer and is isolated from the bonding metal by the barrier layer. A p-type gallium nitride epitaxial layer is on the encapsulated mirror, an indium gallium nitride active layer is on the p-type layer, and an n-type gallium nitride layer is on the indium gallium nitride layer, and a bond pad is made to the n-type gallium nitride layer.
摘要:
A light emitting diode is disclosed having a vertical orientation with an ohmic contact on portions of a top surface of the diode and a mirror layer adjacent the light emitting region of the diode. The diode includes an opening in the mirror layer beneath the geometric projection of the top ohmic contact through the diode that defines a non-contact area between the mirror layer and the light emitting region of the diode to encourage current flow to take place other than at the non-contact area to in turn decrease the number of light emitting recombinations beneath the ohmic contact and increase the number of light emitting recombinations in the more transparent portions of the diode.
摘要:
A method is disclosed for attaching a bonding pad to the ohmic contact of a diode while reducing the complexity of the photolithography steps. The method includes the steps of forming a blanket passivation layer over the epitaxial layers and ohmic contacts of a diode, depositing a photoresist layer over the blanket passivation layer, opening a via through the photoresist above the ohmic contacts and on the blanket passivation layer, removing the portion of the blanket passivation layer defined by the via to expose the surface of the ohmic contact, depositing a metal layer on the remaining photoresist, and on the exposed portion of the ohmic contact defined by the via, and removing the remaining photoresist to thereby concurrently remove any metal on the photoresist and to thereby establish a metal bond pad on the ohmic contact in the via.
摘要:
A method is disclosed for treating a silicon carbide substrate for improved epitaxial deposition thereon and for use as a precursor in the manufacture of devices such as light emitting diodes. The method includes the steps of implanting dopant atoms of a first conductivity type into the first surface of a conductive silicon carbide wafer having the same conductivity type as the implanting ions at one or more predetermined dopant concentrations and implant energies to form a dopant profile, annealing the implanted wafer, and growing an epitaxial layer on the implanted first surface of the wafer.
摘要:
A method and resulting structures are disclosed for fabricating a high efficiency high extraction light emitting diode suitable for packaging. The method includes the steps of adding a light emitting active portion of wide-bandgap semiconductor material to a conductive silicon carbide substrate, joining the added active portion to a conductive sub-mounting structure, and removing a portion of the silicon carbide substrate opposite the added active portion to thereby reduce the overall thickness of the joined substrate, active portion and sub-mounting structure. The resulting the sub-mounting structure can be joined to a lead frame with the active portion positioned between the silicon carbide substrate and the sub-mounting structure to thereby use the sub-mounting structure to separate the active portion from the lead frame and avoid undesired electrical contact between the active portion and the lead frame.