摘要:
A method of producing polymer/nanotube composites where the density and position of the nanotubes (11) within the composite ca be controlled. Carbon nanotubes (11) are grown from organometallic micropatterns. These periodic nanotube arrays are then incorporated into a polymer matrix (7) by deposing a curable polymer film on the as-grown tubes. This controlled method of producing free-standing nanotube/polymer composite films may be used to form nanosensor (3) which provide information regarding a physical condition of a material (20), such as an airplane chassis or wing, in contact with the nanosensor (3).
摘要:
A method of producing polymer/nanotube composites where the density and position of the nanotubes within the composite can be controlled. Carbon nanotubes are grown from organometallic micropatterns. These periodic nanotube arrays are then incorporated into a polymer matrix by depositing a curable polymer film on the as-grown tubes. This controlled method of producing free-standing nanotube/polymer composite films may be used to form nanosensors which provide information regarding a physical condition of a material, such as an airplane chassis or wing, in contact with the nanosensor.
摘要:
The invention relates to derivatized, well-dispersed CNTs that have enhanced miscibility with organic agents. Composite materials may be made using such CNTs. The composite materials, in turn, may be used in optical and electronic applications.
摘要:
An organic photovoltaic conversion device, such as a solar cell includes a matrix material, such as a polymer matrix material, carbon nanotubes dispersed in the matrix material, and photovoltaic organic molecules, such as organic dye molecules, attached to defect sites on the carbon nanotubes.
摘要:
A system and method for depositing a coating may comprise a coating chemical reactor, surface activation component, and a deposition component. A target surface may be prepared for deposition with the surface activation component. The coating chemical reactor may comprise a coating chemical dispenser and a coating chemical verifier that prepares the coating chemical for deposition. The coating chemical verifier may utilize an optical excitation source and at least one optical detector, wherein chemical substances are identified by unique signatures composed of binary code. The coating chemical may be received by the deposition component to depositing the coating chemical on the target surface.
摘要:
The present disclosure describes antennas based on a conductive polymer composite as replacements for metallic antennas. The antennas include a non-conductive support structure and a conductive composite layer deposited on the non-conductive support structure. The conductive composite includes a plurality of carbon nanotubes and a polymer. Each of the plurality of carbon nanotubes is in contact with at least one other of the plurality of carbon nanotubes. The conductive composite layer is operable to receive at least one electromagnetic signal. Other various embodiments of the antennas include a hybrid antenna structure wherein a metallic antenna underbody replaces the non-conductive support structure. In the hybrid antennas, the conductive composite layer acts as an amplifier for the metallic antenna underbody. Methods for producing the antennas and hybrid antennas are also disclosed. Radios, cellular telephones and wireless network cards including the antennas and hybrid antennas are also described.
摘要:
A versatile solar deployment system may provide one or more scalable solar deployment units. A solar deployment unit may include a chassis, a panel support provided by the chassis, and one or more solar panels coupled to the panel support, wherein the solar panels are folded together in an undeployed position, and the solar panels are unfolded in a deployed position. Alternatively, a solar deployment unit may include a rolling mechanism providing a rotating shaft and a flexible panel. One end of the flexible panel is secured to the rotating shaft, the flexible panel is rolled around the rotating shaft to retract the flexible panel into an undeployed position, and the flexible panel is unrolled to deploy the flexible panel into a deployed position.
摘要:
The present disclosure describes antennas based on a conductive polymer composite as replacements for metallic antennas. The antennas include a non-conductive support structure and a conductive composite layer deposited on the non-conductive support structure. The conductive composite includes a plurality of carbon nanotubes and a polymer. Each of the plurality of carbon nanotubes is in contact with at least one other of the plurality of carbon nanotubes. The conductive composite layer is operable to receive at least one electromagnetic signal. Other various embodiments of the antennas include a hybrid antenna structure wherein a metallic antenna underbody replaces the non-conductive support structure. In the hybrid antennas, the conductive composite layer acts as an amplifier for the metallic antenna underbody. Methods for producing the antennas and hybrid antennas are also disclosed. Radios, cellular telephones and wireless network cards including the antennas and hybrid antennas are also described.
摘要:
A process of fabricating the waterproof coating may include selecting a substrate, utilizing a sol-gel comprising a silane or silane derivative and metal oxide precursor to coat the substrate, and optionally coating the substrate with a hydrophobic chemical agent and/or other chemical agents to create a surface with nanoscopic or microscopic features. The process may utilize an all solution process or controlled environment for fabricating self-cleaning and waterproof coating that prevent wetting or staining of a substrate, or may utilize a controlled environment.
摘要:
A method of forming a self-cleaning coating on a substrate comprises the step of selecting a substrate, cleaning the substrate, and/or roughening the substrate using an abrasive. In an embodiment, roughening of the substrate create microscopic tortuous grooves. Another embodiment of the method comprises coating the roughened surface with at least one hydrophobic chemical agent. In an exemplary embodiment, the hydrophobic chemical agent covalently binds with the substrate creating nanoscopic grooves. Another embodiment of the present disclosure pertains to an apparatus for depositing a self-cleaning coating on a flat substrate. A further embodiment of the present disclosure pertains to a self-cleaning coating on a substrate comprising a hydrophobic chemical agent covalently bonded to at least one roughened surface of the substrate.