摘要:
Semiconductor doping techniques, along with related methods and structures, are disclosed that produce components having a more tightly controlled source and drain extension region dopant profiles without significantly inducing gate edge diode leakage. The technique follows the discovery that carbon, which may be used as a diffusion suppressant for dopants such as boron, may produce a gate edge diode leakage if present in significant quantities in the source and drain extension regions. As an alternative to placing carbon in the source and drain extension regions, carbon may be placed in the source and drain regions, and the thermal anneal used to activate the dopant may be relied upon to diffuse a small concentration of the carbon into the source and drain extension regions, thereby suppressing dopant diffusion in these regions without significantly inducing gate edge diode leakage. The increased concentration of carbon in the source and drain regions may permit heavier doping of the source/drain region, leading to improved gate capacitance.
摘要:
Semiconductor doping techniques, along with related methods and structures, are disclosed that produce components having a more tightly controlled source and drain extension region dopant profiles without significantly inducing gate edge diode leakage. The technique follows the discovery that carbon, which may be used as a diffusion suppressant for dopants such as boron, may produce a gate edge diode leakage if present in significant quantities in the source and drain extension regions. As an alternative to placing carbon in the source and drain extension regions, carbon may be placed in the source and drain regions, and the thermal anneal used to activate the dopant may be relied upon to diffuse a small concentration of the carbon into the source and drain extension regions, thereby suppressing dopant diffusion in these regions without significantly inducing gate edge diode leakage. The increased concentration of carbon in the source and drain regions may permit heavier doping of the source/drain region, leading to improved gate capacitance.
摘要:
The disclosure relates to a method of forming an n-type doped active area on a semiconductor substrate that presents an improved placement profile. The method comprises the placement of arsenic in the presence of a carbon-containing arsenic diffusion suppressant in order to reduce the diffusion of the arsenic out of the target area during heat-induced annealing. The method may additionally include the placement of an amorphizer, such as germanium, in the target area in order to reduce channeling of the arsenic ions through the crystalline lattice. The method may also include the use of arsenic in addition to another n-type dopant, e.g. phosphorus, in order to offset some of the disadvantages of a pure arsenic dopant. The disclosure also relates to a semiconductor component, e.g. an NMOS transistor, formed in accordance with the described methods.
摘要:
Pipe defects in n-type lightly doped drain (NLDD) regions and n-type source/drain (NDS) regions are associated with arsenic implants, while excess diffusion in NLDD and NSD regions is mainly due to phosphorus interstitial movement. Carbon implanatation is commonly used to reduce phosphorus diffusion in the NLDD, but contributes to gated diode leakage (GDL). In high threshold NMOS transistors GDL is commonly a dominant off-state leakage mechanism. This invention provides a method of forming an NMOS transistor in which no carbon is implanted into the NLDD, and the NSD is formed by a pre-amorphizing implant (PAI), a phosphorus implant and a carbon species implant. Use of carbon in the NDS allows a higher concentration of phosphorus, resulting in reduced series resistance and reduced pipe defects. An NMOS transistor with less than 1·1014 cm−2 arsenic in the NSD and a high threshold NMOS transistor formed with the inventive method are also disclosed
摘要:
There is presented a method of forming a semiconductor device. The method comprises forming gate structures including forming gate electrodes over a semiconductor substrate and forming spacers adjacent the gate electrodes. Source/drains are formed adjacent the gate structures, and a laminated stress layer is formed over the gate structure and the semiconductor substrate. The formation of the laminated stress layer includes cycling a deposition process to form a first stress layer over the gate structures and the semiconductor substrate and at least a second stress layer over the first stress layer. After the laminated layer is formed, it is subjected to an anneal process conducted at a temperature of about 900° C. or greater.
摘要:
The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device includes, among other steps, forming a gate structure over a substrate, the gate structure having source/drain regions proximate thereto and in, on or over the substrate, forming a pre-metal dielectric layer over the gate structure and source/drain regions, and subjecting the pre-metal dielectric layer to an energy beam treatment, the energy beam treatment configured to change a stress of the pre-metal dielectric layer, and thus change a stress in the substrate therebelow.
摘要:
The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among other steps, may include forming a gate structure over a substrate, forming at least a portion of gate sidewall spacers proximate sidewalls of the gate structure, and subjecting the at least a portion of the gate sidewall spacers to an energy beam treatment, the energy beam treatment configured to change a stress of the at least a portion of the gate sidewall spacers, and thus change a stress in the substrate therebelow.
摘要:
A process of fabricating an IC is disclosed in which a polysilicon resistor and a gate region of an MOS transistor are implanted concurrently. The concurrent implantation may be used to reduce steps in the fabrication sequence of the IC. The concurrent implantation may also be used to provide another species of transistor in the IC with enhanced performance. Narrow PMOS transistor gates may be implanted concurrently with p-type polysilicon resistors to increase on-state drive current. PMOS transistor gates over thick gate dielectrics may be implanted concurrently with p-type polysilicon resistors to reduce gate depletion. NMOS transistor gates may be implanted concurrently with n-type polysilicon resistors to reduce gate depletion, and may be implanted concurrently with p-type polysilicon resistors to provide high threshold NMOS transistors in the IC.
摘要:
The invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among others, may include forming one or more layers of material within an opening in a substrate, the opening and the one or more layers forming at least a portion of an isolation structure, and subjecting at least one of the one or more layers to an energy beam treatment, the energy beam treatment configured to change a stress of the one or more layers subjected thereto, and thus change a stress in the substrate.
摘要:
An integrated circuit (IC) includes at least one NMOS transistor, wherein the NMOS transistor includes a substrate having a semiconductor surface, and a gate stack formed in or on the surface including a gate electrode on a gate dielectric, wherein a channel region is located in the semiconductor surface below the gate dielectric. A source and a drain region are on opposing sides of the gate stack. An In region having a retrograde profile is under at least a portion of the channel region. The retrograde profile includes (i) a surface In concentration at a semiconductor surface interface with the gate dielectric of less than 5×1016 cm−3, (ii) a peak In concentration at least 20 nm from the semiconductor surface below the gate dielectric, and wherein (iii) the peak In concentration is at least two (2) orders of magnitude higher than the In concentration at the semiconductor surface interface. A method to form an IC including at least one NMOS transistor includes implanting a first In implant at a first energy and a second In implant at a second energy, wherein the first In implant together with the second In implant form an In region having a retrograde profile under at least a portion of the channel region, and wherein the second energy is at least 5 keV more than the first energy.