Abstract:
Systems and methods relate to managing shared resources in a multithreaded processor comprising two or more processing threads. Danger levels for the two or more threads are determined, wherein the danger level of a thread is based on a potential failure of the thread to meet a deadline due to unavailability of a shared resource. Priority levels associated with the two or more threads are also determined, wherein the priority level is higher for a thread whose failure to meet a deadline is unacceptable and the priority level is lower for a thread whose failure to meet a deadline is acceptable. The two or more threads are scheduled based at least on the determined danger levels for the two or more threads and priority levels associated with the two or more threads.
Abstract:
Processor access of memory is monitored. The monitoring includes identifying the accesses being to a local memory or a non-local memory. Based on the monitoring, the processor is switched from a non-local memory access mode to a local memory access mode.
Abstract:
Systems and methods for implementing certain load instructions, such as vector load instructions by cooperation of a main processor and a coprocessor. The load instructions which are identified by the main processor for offloading to the coprocessor are committed in the main processor without receiving corresponding load data. Post-commit, the load instructions are processed in the coprocessor, such that latencies incurred in fetching the load data are hidden from the main processor. By implementing an out-of-order load data buffer associated with an in-order instruction buffer, the coprocessor is also configured to avoid stalls due to long latencies which may be involved in fetching the load data from levels of memory hierarchy, such as L2, L3, L4 caches, main memory, etc.
Abstract:
In an aspect, high priority lines are stored starting at an address aligned to a cache line size for instance 64 bytes, and low priority lines are stored in memory space left by the compression of high priority lines. The space left by the high priority lines and hence the low priority lines themselves are managed through pointers also stored in memory. In this manner, low priority lines contents can be moved to different memory locations as needed. The efficiency of higher priority compressed memory accesses is improved by removing the need for indirection otherwise required to find and access compressed memory lines, this is especially advantageous for immutable compressed contents. The use of pointers for low priority is advantageous due to the full flexibility of placement, especially for mutable compressed contents that may need movement within memory for instance as it changes in size over time
Abstract:
A translation lookaside buffer (TLB) stores translation entries. The translation entries include a virtual address, a physical address and a memory local/not-local flag. When a processor is in a low power/local memory mode a virtual address is received. A matching translation entry has a local/not-local flag. Upon the local/not-local flag indicating the physical address of the matching translation entry being outside the local memory, an out-of-access-range memory access exception is generated.