Abstract:
A programmable logic circuit such as a finite state machine is provided that is configured to determine a memory array power-up sequence from a configuration signal to successively enable each memory array. A delay circuit triggers an initial memory bank in each enabled memory array to power-up without a delay. The delay circuit then counts responsive to a clock to determine a delay between a successive triggering of remaining memory banks in each enabled memory array to power-up.
Abstract:
Systems and methods for optimizing a memory rail voltage are disclosed. The system may comprise a plurality of sensor cells, each sensor cell comprising at least one bitcell replica having a predefined data retention voltage higher than a data retention voltage of a similar memory bit cell. The sensor cells may be configured to provide an output based on a sensor rail voltage higher than the predefined data retention voltage. The system may further comprise a controller operably coupled to a power management circuit and configured to adjust the memory rail and the sensor rail voltages. The controller may be further configured to compare an expected value to the sensor indication. The controller may decrease the sensor rail voltage and the memory rail voltage based on the indication until a sensor indicates a bitcell replica has failed, indicating an optimum memory rail voltage has been reached.
Abstract:
In some aspects, a method for adjusting an operating frequency of a memory controller is provided, wherein a graphics processing unit (GPU) accesses a memory via the memory controller. The method includes monitoring activity of the GPU to determine an active time of the GPU, comparing the determined active time with an active threshold, and, if the determined active time is greater than the active threshold, increasing the operating frequency of the memory controller.
Abstract:
In some aspects, a method for adjusting an operating frequency of a memory controller is provided, wherein a graphics processing unit (GPU) accesses a memory via the memory controller. The method includes monitoring activity of the GPU to determine an active time of the GPU, comparing the determined active time with an active threshold, and, if the determined active time is greater than the active threshold, increasing the operating frequency of the memory controller.
Abstract:
A programmable logic circuit such as a finite state machine is provided that is configured to determine a memory array power-up sequence from a configuration signal to successively enable each memory array. A delay circuit triggers an initial memory bank in each enabled memory array to power-up without a delay. The delay circuit then counts responsive to a clock to determine a delay between a successive triggering of remaining memory banks in each enabled memory array to power-up.