Abstract:
A method for communications is described. The method includes determining a symbol timing drift elimination amount for a received signal. The method further includes eliminating part of the symbol timing drift by adjusting a reference clock for the modem. Determining the symbol timing drift elimination amount may be based on at least one of a symbol timing drift estimate, a symbol timing error, a packet acquisition indicator, a packet validity indicator, demodulated bits or a carrier presence indicator.
Abstract:
A method for performing near-field communication (NFC)-type operations in the far-field region using a repurposed antenna is described. The method includes determining whether to perform NFC-type operations in a near-field mode or a far-field mode. The method further includes performing NFC-type operations outside a near-field region using a repurposed antenna when in the far-field mode.
Abstract:
In one aspect, an apparatus for wirelessly coupling with other devices is provided. The apparatus includes a metallic cover having a removed portion. The apparatus comprises a first coil substantially wound around the removed portion of the metallic cover and configured to communicate with at least one other device via a communications protocol. The metallic cover comprises a second coil substantially wound around the removed portion of the metallic cover and configured to wirelessly and inductively receive charging power sufficient to charge or power the apparatus from at least one wireless charging power transmitter.
Abstract:
A method for inductively coupled communication is described. The method includes applying a carrier signal at a carrier frequency to an antenna circuit. The antenna circuit includes an antenna and a matching network that resonate at a resonant frequency. The method also includes measuring a looped-back signal over a range of impedance values. The looped-back signal includes the carrier signal received by a receiver coupled to the antenna circuit. The method further includes setting a calibrated impedance as an impedance configuration that produces a resonance peak in the looped-back signal.
Abstract:
A method for performing near-field communication (NFC)-type operations in the far-field region using a repurposed antenna is described. The method includes determining whether to perform NFC-type operations in a near-field mode or a far-field mode. The method further includes performing NFC-type operations outside a near-field region using a repurposed antenna when in the far-field mode.
Abstract:
A wireless communication device is described. The wireless communication device includes a processor, a memory in communication with the processor and instructions stored in the memory. The instructions are executable by the processor to detect a signal degradation indication for a radio frequency (RF) signal. The instructions are also executable by the processor to cause a switch to select a combination of a first matching network and a second matching network coupled to an antenna in response to detecting the signal degradation indication.
Abstract:
A method for reducing transmission interference is described. The method includes determining that an FM receiver is turned on. The method also includes determining that the FM receiver is tuned to an FM channel experiencing interference from an induction-based communication transmitter. The method further includes adjusting a transmit frequency of the induction-based communication transmitter by a temporary frequency shift.
Abstract:
An example phase-locked loop (PLL) includes a digital filter, an oscillator, and a time-to-digital converter (TDC). The digital filter is configured to sample at a discrete time that is responsive to a reference clock signal received at the digital filter. The oscillator is coupled to the digital filter and configured to generate an output signal of the PLL. The TDC is coupled to the oscillator to determine a phase difference between the output signal and the reference clock signal. The TDC also provides a time signal to the digital filter that is based on the phase difference and is representative of an instantaneous rate of operation of the PLL. The digital filter is further configured to adjust a response characteristic of the digital filter according to the time signal.
Abstract:
Systems and methods are disclosed that may detect a likely presence of a narrow band signal in the presence of wide-band interference without powering up a wireless receiver. A wireless device may receive a wireless signal, measure a first energy level in a first frequency band associated with an expected frequency band of the narrow band wireless signal, measure a second energy level in a second frequency band that is offset from and non-overlapping with the first frequency band, and determine whether a difference between the first energy level and the second energy level exceeds a threshold. A wireless receiver of the wireless device may be powered up based at least in part on the difference between the first energy level and the second energy level exceeding the threshold.
Abstract:
A method for inductively coupled communication is described. The method includes applying a carrier signal at a carrier frequency to an antenna circuit. The antenna circuit includes an antenna and a matching network that resonate at a resonant frequency. The method also includes measuring a looped-back signal over a range of impedance values. The looped-back signal includes the carrier signal received by a receiver coupled to the antenna circuit. The method further includes setting a calibrated impedance as an impedance configuration that produces a resonance peak in the looped-back signal.