Abstract:
A system for protecting a device having variable internal resistance includes a protection fuse capable of blowing when a current having an intensity greater than an intensity threshold passes through. The system also includes an estimator suitable for estimating the internal resistance of the device, and a safety device suitable for limiting and/or preventing use of the device when the internal resistance is greater than a resistance threshold beyond which the protection fuse is inoperative.
Abstract:
An energy storage device includes a set of electrochemical modules and a housing enclosing the modules. The housing includes a double-walled structure. Each module includes electrochemical cells and an enclosure surrounding the electrochemical cells. The enclosure is provided with at least one weak zone capable of discharging gases contained inside the module. The structure includes an inner wall, an outer wall, and at least one chamber defined between the inner wall and the outer wall. The inner wall is provided with a set of openings positioned opposite the at least one weak zone of each module and the outer wall is provided with at least one discharge opening.
Abstract:
A housing for a battery includes an envelope and at least one rupture device provided with a rupture cap. The rupture device is mounted at the location of an opening formed in the envelope. The rupture cap breaks when an excess pressure is exerted on its outer surface situated on the outer side of the housing.
Abstract:
A method for managing an electrochemical accumulator or a storage battery includes determining an estimated value of a state of deterioration of the accumulator from the accumulator's history of voltage values, intensity of current flow, and temperature. The estimated value is a barycentric value of the state of deterioration calculated as a barycenter of at least two values. The at least two values include a first value indicative of the state of deterioration of the accumulator calculated by a first method and a second value indicative of the state of deterioration of the accumulator calculated by a second method different from the first method. From an initial commissioning state of the accumulator, barycentric coefficients are varied at least once to calculate the next barycentric value when a previous value of the state of deterioration of the accumulator, calculated according to the first method, has passed a first threshold.
Abstract:
The invention concerns a method for managing the charging of an Li-ion battery on the basis of at least one parameter chosen from the group consisting of the deterioration of the battery and cell imbalance, comprising the following steps of receiving a signal determining the end-of-charge voltage value of said battery, of generating a control signal controlling the charging of said battery, and of transmitting the control signal to a charger, the control signal being generated such that the battery is charged on the basis of the end-of-charge voltage value determined in step a), said end-of-charge voltage value being increased on the basis of the state of deterioration of said Li-ion battery until a limit value is reached, in order to ensure a constant minimal level of required energy in said Li-ion battery, for a predetermined reference temperature.
Abstract:
An electrochemical pouch cell is for an electrical energy storage device, in particular intended for a motor vehicle. The electrochemical cell includes a stack of a plurality of electrodes, at least one electric terminal and a liner connected to the electric terminal and to itself, respectively at a primary connection and a secondary connection, so as to form a recess into which the plurality of electrodes and all or part of the at least one electric terminal extend, the electric terminal having a first dimension substantially equal to or greater than a first dimension of a stack of the plurality of electrodes.
Abstract:
Said method is used for detecting, in an electric storage battery (10) having a plurality of battery cells (1, 2, 3, 4), a self-discharge defect in a cell (1, 2, 3, 4), wherein: a charge balancing of the battery cells (1, 2, 3, 4) is at least partially carried out, a relaxation of the battery cells (1, 2, 3, 4) is performed, a charge balance during the balancing and relaxation (Σi) of said cell (i) is calculated for each battery cell (i), and any self-discharge defects of said cell (i) are detected for each battery cell (i) depending on the charge balance calculated for said cell (i) during the balancing and relaxation (Σi).
Abstract:
A battery module including: a storage case, at least one storage battery cell housed inside the storage case, at least one Peltier cell with a first face in direct or indirect contact, via a heat conduction member, with the storage battery cell and a second face in direct or indirect contact, via a heat conduction member, with an outside of the storage case, and a unit controlling the Peltier cell. The Peltier cell and the control unit are supplied with current by the storage battery cell.