Abstract:
A storage tank having an inner vessel disposed within an outer vessel. A common-access tube or conduit is used to route the various fluid flow lines into the interior of the inner vessel. The common-access tube facilitates modular construction and assembly of the storage tank.
Abstract:
A cryogenic fluid storage tank having an inlet conduit, an outlet conduit, and a thermal shield in thermal contact with the inner vessel is disclosed, wherein the thermal shield is adapted to militate against heat transfer from the atmosphere to a cryogenic fluid by the inlet conduit and the outlet conduit.
Abstract:
The present invention teaches methods of operating a pressurized cryogenic liquid gas storage tank that has a vent cooling shield around which fuel vented from a storage tank flows to cool the storage tank by reducing the influence of heat influx into the storage tank. The method of the present invention provides for reduction in the quantity of fuel loss during the venting operation and allows a greater volume of liquid fuel to be stored in the storage tank. The method includes allowing fuel in a storage tank to transition between a two-phase state of liquid and gas into a single-phase state of liquid and back into a two-phase state of liquid and gas. Additionally, the present invention allows filling a storage tank to a liquid level greater than about 95% of the capacity of the storage tank.
Abstract:
The present invention teaches methods of operating a pressurized cryogenic liquid gas storage tank that has a vent cooling shield around which fuel vented from a storage tank flows to cool the storage tank by reducing the influence of heat influx into the storage tank. The method of the present invention provides for reduction in the quantity of fuel loss during the venting operation and allows a greater volume of liquid fuel to be stored in the storage tank. The method includes allowing fuel in a storage tank to transition between a two-phase state of liquid and gas into a single-phase state of liquid and back into a two-phase state of liquid and gas. Additionally, the present invention allows filling a storage tank to a liquid level greater than about 95% of the capacity of the storage tank.
Abstract:
A cryogenic fluid storage tank having a first conduit adapted for filling and extracting a cryogenic liquid from the tank and a second conduit adapted for filling and extracting a gas from the tank is disclosed, wherein heat originating from inlet and outlet conduits transferred to the tank is minimized.
Abstract:
A shut-off valve for opening and closing a cryogenic tank that has particular application for a hydrogen consuming system, such as a fuel cell system or an internal combustion engine. The shut-off valve is positioned in a supply line coupled to the cryogenic tank, and is opened by a control valve. When the control valve is actuated, hydrogen pressure from the supply line is used to open the shut-off valve. The control valve is coupled to the output line either upstream or downstream of the shut-off valve. An output of the control valve can be vented to a cathode input, an anode input or a cathode exhaust of a fuel cell stack, to an air input of an internal combustion engine or to ambient, depending on the particular application.
Abstract:
A pressure maintaining system for a hydrogen storage system includes a hydrogen supply feed that enables a hydrogen flow from the hydrogen storage system. A liquid phase hydrogen feed enables a liquid phase hydrogen flow to the hydrogen supply feed. A gas phase hydrogen feed enables a gas phase hydrogen flow to the hydrogen supply feed. A check valve enables fluid communication from the hydrogen supply feed to the liquid phase hydrogen feed when a pressure within the hydrogen supply feed is greater than a threshold pressure.
Abstract:
A cryogenic storage tank having an inner vessel disposed within an outer vessel. The fluid flow lines that extend from the interior of the inner vessel to the exterior of the outer vessel have both corrugated-and non-corrugated portions. The corrugated portions advantageously facilitate the bending of the fluid flow lines into a desired orientation while the non-corrugated portions provide rigidity and stiffness for the fluid flow lines.
Abstract:
The present invention provides a probe having a resistance that varies with temperature and is operable to determine the quantity of a fluid, such as hydrogen, in a storage tank, such as a cryogenic storage tank. The probe relies upon differing heat transfer rates for the gaseous and liquid phases of the fluid and a change in resistance due to a change in temperature of the probe to ascertain the quantity of fluid within the storage tank. The probe can be configured to account for the geometry of the storage tank thereby providing a linearized signal indicative of the quantity of fluid in the storage tank.
Abstract:
A hydrogen storage and supply system comprises a storage vessel containing a liquefied or condensed hydrogen in sufficient contact with a catalyst inside the vessel. The storage vessel comprises an inner tank, an outer jacket, a vacuum insulation between said inner tank and outer jacket, and a catalyst disposed inside the inner tank, wherein the catalyst is capable of converting para-hydrogen to ortho-hydrogen at temperatures between about 20° K to about 80° K. A process of storing and supplying hydrogen using the system is also disclosed.