INTERMEDIATE LAYERS FOR ELECTRODE FABRICATION
    2.
    发明申请
    INTERMEDIATE LAYERS FOR ELECTRODE FABRICATION 审中-公开
    电极制造的中间层

    公开(公告)号:US20110111300A1

    公开(公告)日:2011-05-12

    申请号:US12944576

    申请日:2010-11-11

    摘要: Provided are novel electrodes for use in lithium ion batteries. An electrode includes one or more intermediate layers positioned between a substrate and an electrochemically active material. Intermediate layers may be made from chromium, titanium, tantalum, tungsten, nickel, molybdenum, lithium, as well as other materials and their combinations. An intermediate layer may protect the substrate, help to redistribute catalyst during deposition of the electrochemically active material, improve adhesion between the active material and substrate, and other purposes. In certain embodiments, an active material includes one or more high capacity active materials, such as silicon, tin, and germanium. These materials tend to swell during cycling and may loose mechanical and/or electrical connection to the substrate. A flexible intermediate layer may compensate for swelling and provide a robust adhesion interface. Provided also are novel methods of fabricating electrodes containing one or more intermediate layers.

    摘要翻译: 提供用于锂离子电池的新型电极。 电极包括位于基底和电化学活性材料之间的一个或多个中间层。 中间层可以由铬,钛,钽,钨,镍,钼,锂以及其它材料及其组合制成。 中间层可以保护基底,有助于在电化学活性材料的沉积期间重新分布催化剂,改善活性材料和基底之间的粘附性以及其它目的。 在某些实施方案中,活性材料包括一种或多种高容量活性材料,例如硅,锡和锗。 这些材料在循环过程中倾向于膨胀,并可能导致与基底的机械和/或电连接。 柔性中间层可以补偿溶胀并提供牢固的粘合界面。 还提供了制造包含一个或多个中间层的电极的新方法。

    Forming multilayered solid electrolyte interphase structures on high capacity electrodes
    3.
    发明授权
    Forming multilayered solid electrolyte interphase structures on high capacity electrodes 有权
    在高容量电极上形成多层固体电解质相间结构

    公开(公告)号:US09112212B1

    公开(公告)日:2015-08-18

    申请号:US13281252

    申请日:2011-10-25

    IPC分类号: H01M4/134 H01M4/02

    摘要: Provided are novel methods of fabricating electrochemical cells containing high capacity active materials that form multilayered solid electrolyte interphase (SEI) structures on the active material surface during cell fabrication. Combining multiple different SEI layers on one surface can substantially improve cell performance by providing each layer with different properties. For example, an outer layer having a high electronic resistance may be combined with an inner layer having a high ionic permeability. To form such multilayered SEI structures, formation may involve changing electrolyte composition, functionalizing surfaces, and/or varying formation conditions. For example, formation may start with a boron containing electrolyte. This initial electrolyte is then replaced with an electrolyte that does not contain boron and instead may contain fluorine additives. In certain embodiments, cell's temperature is changed during formation to initiate different chemical reactions during SEI formation. Variations in multilayered SEI structures may be also achieved by varying current rates.

    摘要翻译: 提供了在电池制造期间在活性材料表面上形成含有高容量活性材料的电化学电池的新颖方法,其在活性材料表面上形成多层固体电解质间相(SEI)结构。 在一个表面上组合多个不同的SEI层可以通过提供每个层具有不同的性质来显着改善电池的性能。 例如,具有高电子电阻的外层可以与具有高离子渗透性的内层组合。 为了形成这种多层SEI结构,形成可能涉及改变电解质组成,官能化表面和/或变化的形成条件。 例如,可以用含硼电解质开始形成。 然后用不含硼的电解质替代该初始电解质,并且可以含有氟添加剂。 在某些实施方案中,细胞的温度在形成过程中改变,以在SEI形成过程中引发不同的化学反应。 多层SEI结构的变化也可以通过改变当前速率来实现。

    Preloading lithium ion cell components with lithium
    4.
    发明授权
    Preloading lithium ion cell components with lithium 有权
    用锂预加载锂离子电池组件

    公开(公告)号:US08846251B2

    公开(公告)日:2014-09-30

    申请号:US12944593

    申请日:2010-11-11

    IPC分类号: H01M4/13 H01M4/58

    摘要: Provided are novel negative electrodes for use in lithium ion cells. The negative electrodes include one or more high capacity active materials, such as silicon, tin, and germanium, and a lithium containing material prior to the first cycle of the cell. In other words, the cells are fabricated with some, but not all, lithium present on the negative electrode. This additional lithium may be used to mitigate lithium losses, for example, due to Solid Electrolyte Interphase (SEI) layer formation, to maintain the negative electrode in a partially charged state at the end of the cell discharge cycle, and other reasons. In certain embodiments, a negative electrode includes between about 5% and 25% of lithium based on a theoretical capacity of the negative active material. In the same or other embodiments, a total amount of lithium available in the cell exceeds the theoretical capacity of the negative electrode active material.

    摘要翻译: 提供用于锂离子电池的新型负极。 负极包括一种或多种高容量活性物质,例如硅,锡和锗,以及在电池的第一循环之前的含锂材料。 换句话说,电池制造有一些而不是全部锂存在于负电极上。 这种额外的锂可以用于减轻锂损失,例如,由于固体电解质相(SEI)层形成,以在电池放电循环结束时将负极维持在部分充电状态,以及其它原因。 在某些实施方案中,基于负极活性材料的理论容量,负极包括约5%至25%的锂。 在相同或其它实施方案中,电池中可用的锂的总量超过负极活性材料的理论容量。

    Open structures in substrates for electrodes
    5.
    发明授权
    Open structures in substrates for electrodes 有权
    用于电极的基板中的开放结构

    公开(公告)号:US08637185B2

    公开(公告)日:2014-01-28

    申请号:US12944596

    申请日:2010-11-11

    IPC分类号: H01M4/38

    摘要: Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.

    摘要翻译: 提供了具有至少约25%,或更具体地至少约50%的具有开放结构和分数空隙体积的导电基底,用于锂离子电池。 纳米结构的活性材料沉积在这样的衬底上以形成电池电极。 在循环过程中,分数空隙体积有助于适应一些活性物质的溶胀。 在某些实施例中,电极的整个外部尺寸在循环过程中保持基本相同,而导电衬底的内部开放空间为纳米结构活性材料中的任何体积变化提供了空间。 在具体实施方案中,将纳米级的硅层沉积在金属网上以形成负电极。 在另一个实施例中,导电衬底是具有多个开口的穿孔片,使得纳米结构的活性材料沉积到开口中而不是在片的外表面上。

    OPEN STRUCTURES IN SUBSTRATES FOR ELECTRODES
    6.
    发明申请
    OPEN STRUCTURES IN SUBSTRATES FOR ELECTRODES 有权
    电极基板的开放结构

    公开(公告)号:US20110111296A1

    公开(公告)日:2011-05-12

    申请号:US12944596

    申请日:2010-11-11

    摘要: Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.

    摘要翻译: 提供了具有至少约25%,或更具体地至少约50%的具有开放结构和分数空隙体积的导电基底,用于锂离子电池。 纳米结构的活性材料沉积在这样的衬底上以形成电池电极。 在循环过程中,分数空隙体积有助于适应一些活性物质的溶胀。 在某些实施例中,电极的整个外部尺寸在循环过程中保持基本相同,而导电衬底的内部开放空间为纳米结构化活性材料中的任何体积变化提供了空间。 在具体实施方案中,将纳米级的硅层沉积在金属网上以形成负电极。 在另一个实施例中,导电衬底是具有多个开口的穿孔片,使得纳米结构的活性材料沉积到开口中而不是在片的外表面上。

    CORE-SHELL HIGH CAPACITY NANOWIRES FOR BATTERY ELECTRODES
    9.
    发明申请
    CORE-SHELL HIGH CAPACITY NANOWIRES FOR BATTERY ELECTRODES 审中-公开
    电池电极的核心高容量纳米管

    公开(公告)号:US20140370380A9

    公开(公告)日:2014-12-18

    申请号:US12787168

    申请日:2010-05-25

    摘要: Provided are nanostructures containing electrochemically active materials, battery electrodes containing these nanostructures for use in electrochemical batteries, such as lithium ion batteries, and methods of forming the nanostructures and battery electrodes. The nanostructures include conductive cores, inner shells containing active materials, and outer shells partially coating the inner shells. The high capacity active materials having a stable capacity of at least about 1000 mAh/g can be used. Some examples include silicon, tin, and/or germanium. The outer shells may be configured to substantially prevent formation of Solid Electrolyte lnterphase (SEI) layers directly on the inner shells. The conductive cores and/or outer shells may include carbon containing materials. The nanostructures are used to form battery electrodes, in which the nanostructures that are in electronic communication with conductive substrates of the electrodes.

    摘要翻译: 提供了含有电化学活性材料的纳米结构体,含有用于电化学电池中的这些纳米结构的电池电极,例如锂离子电池,以及形成纳米结构和电池电极的方法。 纳米结构包括导电芯,含有活性材料的内壳和部分涂覆内壳的外壳。 可以使用具有至少约1000mAh / g的稳定容量的高容量活性材料。 一些实例包括硅,锡和/或锗。 外壳可以构造成基本上防止直接在内壳上形成固体电解质相(SEI)层。 导电芯和/或外壳可以包括含碳材料。 纳米结构用于形成电池电极,其中纳米结构与电极的导电基板电连通。