摘要:
The present invention is directed to a method of packaging multiple semiconductor chips on a second semiconductor chips with a built-in efficient cooling means. One embodiment is to place two multiple chip stacks on opposing sides of a vapor chamber for transferring heat away from the semiconductor chips. Another embodiment is to construct a vapor chamber with a substrate such that at least one multiple chip stack is embedded inside the vapor chamber.
摘要:
A method of forming a structure. An interposer is provided. The interposer is adapted to be interposed between a heat source and a heat sink and to transfer heat from the heat source to the heat sink. The interposer includes an enclosure that encloses a cavity. The enclosure is made of a thermally conductive material. The cavity includes a thermally conductive foam material. The foam material includes pores and includes at least one serpentine channel. Each serpentine channel has at least two contiguously connected channel segments. Each serpentine channel independently forms a closed loop or an open ended loop. The foam material is adapted to be soaked by a liquid filling the pores. Each serpentine channel is adapted to be partially filled with a fluid that serves to transfer heat from the heat source to the heat sink.
摘要:
A structure. The structure includes a substrate and an interposer. The substrate includes a heat source and N continuous substrate channels on a first side of the substrate (N≧2). The interposer includes N continuous interposer channels coupled to the N substrate channels to form M continuous loops (1≦M≦N). Each loop independently consists of K substrate channels and K interposer channels in an alternating sequence. For each loop, K is at least 1 and is subject to an upper limit consistent with a constraint of the M loops collectively consisting of the N interposer channels and the N substrate channels. Each loop is independently open ended or closed. The first side of the substrate is connected to the interposer. The interposer is adapted to be thermally coupled to a heat sink such that the interposer is interposed between the substrate and the heat sink.
摘要:
A structure. The structure includes an interposer adapted to be interposed between a heat source and a heat sink and to transfer heat from the heat source to the heat sink. The interposer includes an enclosure that encloses a cavity. The enclosure is made of a thermally conductive material. The cavity includes a thermally conductive foam material. The foam material includes pores and includes at least one serpentine channel. Each serpentine channel has at least two contiguously connected channel segments. Each serpentine channel independently forms a closed loop or an open ended loop. The foam material is adapted to be soaked by a liquid filling the pores. Each serpentine channel is adapted to be partially filled with a fluid that serves to transfer heat from the heat source to the heat sink.
摘要:
A method of producing a metal-graphite foam composite, and particularly, the utilization thereof in connection with a cooling apparatus. Also provided is a cooling apparatus, such as a liquid cooler or alternatively, a heat sink for electronic heat-generating components, which employ the metal-graphite foam composite.
摘要:
A structure, and method of forming and cooling the structure. The structure may include a substrate (e.g., a semiconductor chip) having N continuous substrate channels and an interposer having N continuous interposer channels (N≧2). The N interposer channels are coupled to the N substrate channels to form M continuous loops (1≦M≦N). The M loops may transfer heat from a heat source within the substrate to the interposer and then to a heat sink thermally coupled to the interposer. The structure may include an interposer having a thermally conductive enclosure surrounding a cavity. The cavity contains a thermally conductive foam material (e.g., graphite foam). The foam material contains a serpentine channel having contiguously connected channel segments. The serpentine channel may transfer heat from a heat source within a substrate (e.g., a semiconductor chip) to the interposer and then to a heat sink thermally coupled to the interposer.
摘要:
A structure. The structure includes a substrate and an interposer. The substrate includes a heat source and N continuous substrate channels on a first side of the substrate (N≧2). The interposer includes N continuous interposer channels coupled to the N substrate channels to form M continuous loops (1≦M≦N). Each loop independently consists of K substrate channels and K interposer channels in an alternating sequence. For each loop, K is at least 1 and is subject to an upper limit consistent with a constraint of the M loops collectively consisting of the N interposer channels and the N substrate channels. Each loop is independently open ended or closed. The first side of the substrate is connected to the interposer. The interposer is adapted to be thermally coupled to a heat sink such that the interposer is interposed between the substrate and the heat sink.
摘要:
A method of producing a metal-graphite foam composite, and particularly, the utilization thereof in connection with a cooling apparatus. Also provided is a cooling apparatus, such as a liquid cooler or alternatively, a heat sink for electronic heat-generating components, which employ the metal-graphite foam composite.
摘要:
A thermal interposer is provided for attachment to a surface of a semiconductor device. In one embodiment, the thermal interposer includes an upper plate having a bottom surface with a plurality of grooves and made of a material having high thermal conductivity, and a lower plate having a top surface with a plurality of grooves and made of a material having a coefficient of thermal expansion that is substantially the same as the coefficient of thermal expansion of the material of a semiconductor device that is bonded to the bottom surface of the lower plate. The bottom surface of the upper plate is hermetically bonded to the top surface of the lower plate so that a vapor chamber is formed by the upper and lower plates, and walls of the grooves on the top surface of the lower plate extend to within less than 250 microns from walls of the grooves on the bottom surface of the upper plate comprise a plurality of second walls the first walls.
摘要:
A method of forming structure. A substrate and an interposer are provided. The substrate includes a heat source and N continuous substrate channels on a first side of the substrate (N≧2). N interposer channels are coupled to the N substrate channels so as to form M continuous loops (1≦M≦N). Each loop independently consists of K substrate channels and K interposer channels in an alternating sequence. For each loop, K is at least 1 and is subject to an upper limit consistent with a constraint of the M loops collectively consisting of the N interposer channels and the N substrate channels. Each loop is independently open ended or closed. The first side of the substrate is connected to the interposer. The interposer is adapted to be thermally coupled to a heat sink such that the interposer is interposed between the substrate and the heat sink.