摘要:
A protection system implemented on one die of a multi-die package provides a discharge path for excess voltages incurred on one or more other die of the package. Ground paths are provided for certain circuitry in the package that have high noise-sensitivity, and ground paths are provided for certain circuitry in the package that have low noise-sensitivity relative to the high noise-sensitivity circuitry. The grounds of high noise-sensitivity circuitry of multiple die are shorted together, resulting in a common high noise-sensitivity ground. The grounds of low noise-sensitivity circuitry of multiple die are shorted together, resulting in a common low noise-sensitivity ground. A pre-designated removable path is included on the package external to the die, which shorts the common high noise-sensitivity ground and the common low noise-sensitivity ground. The removable path may be removed during manufacturing, if noise present on the shorted grounds results in unacceptable performance degradation.
摘要:
A first I/O pad has a first type transistor disposed at a first end of the first I/O pad. A second I/O pad has another first type transistor disposed at a first end of the second I/O pad. The first end of the first I/O pad abuts the first end of the second I/O pad, so the first type transistor is adjacent to the other first type transistor.
摘要:
A first I/O pad has a first type transistor disposed at a first end of the first I/O pad. A second I/O pad has another first type transistor disposed at a first end of the second I/O pad. The first end of the first I/O pad abuts the first end of the second I/O pad, so the first type transistor is adjacent to the other first type transistor.
摘要:
A protection system implemented on one die of a multi-die package provides a discharge path for excess voltages incurred on one or more other die of the package. Ground paths are provided for certain circuitry in the package that have high noise-sensitivity, and ground paths are provided for certain circuitry in the package that have low noise-sensitivity relative to the high noise-sensitivity circuitry. The grounds of high noise-sensitivity circuitry of multiple die are shorted together, resulting in a common high noise-sensitivity ground. The grounds of low noise-sensitivity circuitry of multiple die are shorted together, resulting in a common low noise-sensitivity ground. A pre-designated removable path is included on the package external to the die, which shorts the common high noise-sensitivity ground and the common low noise-sensitivity ground. The removable path may be removed during manufacturing, if noise present on the shorted grounds results in unacceptable performance degradation.
摘要:
Diodes, including gated diodes and shallow trench isolation (STI) diodes, manufacturing methods, and related circuits are provided without at least one halo or pocket implant thereby reducing capacitance of the diode. In this manner, the diode may be used in circuits and other devices having performance sensitive to load capacitance while still obtaining the performance characteristics of the diode. Such characteristics for a gated diode include fast turn-on times and high conductance, making the gated diodes well-suited for electro-static discharge (ESD) protection circuits as one example. Diodes include a semiconductor substrate having a well region and insulating layer thereupon. A gate electrode is formed over the insulating layer. Anode and cathode regions are provided in the well region. A P-N junction is formed. At least one pocket implant is blocked in the diode to reduce capacitance.
摘要:
Diodes, including gated diodes and shallow trench isolation (STI) diodes, manufacturing methods, and related circuits are provided without at least one halo or pocket implant thereby reducing capacitance of the diode. In this manner, the diode may be used in circuits and other devices having performance sensitive to load capacitance while still obtaining the performance characteristics of the diode. Such characteristics for a gated diode include fast turn-on times and high conductance, making the gated diodes well-suited for electro-static discharge (ESD) protection circuits as one example. Diodes include a semiconductor substrate having a well region and insulating layer thereupon. A gate electrode is formed over the insulating layer. Anode and cathode regions are provided in the well region. A P-N junction is formed. At least one pocket implant is blocked in the diode to reduce capacitance.
摘要:
An electrostatic discharge (ESD) protection circuit uses two N-channel field effect transistors (NFETs) to conduct ESD current from a first to a second supply node. During the ESD event, an ESD detection circuit couples the gates of both NFETs to the first supply node through separate conductive paths. In one novel aspect, an RC trigger circuit includes a capacitance that is charged through a resistance. The resistance involves a P-channel transistor whose gate is coupled to the gate of the second NFET. During a normal power-up condition, the P-channel transistor is conductive, thereby preventing the RC trigger from triggering if the supply voltage VDD were to rise rapidly. In another novel aspect, a novel level-shifting inverter drives the second NFET. The level-shifting inverter uses a pull down resistor to avoid snap-back and also isolates the gate of the second NFET from a capacitively loaded third supply node.
摘要:
An electrostatic discharge (ESD) protection circuit uses two N-channel field effect transistors (NFETs) to conduct ESD current from a first to a second supply node. During the ESD event, an ESD detection circuit couples the gates of both NFETs to the first supply node through separate conductive paths. In one novel aspect, an RC trigger circuit includes a capacitance that is charged through a resistance. The resistance involves a P-channel transistor whose gate is coupled to the gate of the second NFET. During a normal power-up condition, the P-channel transistor is conductive, thereby preventing the RC trigger from triggering if the supply voltage VDD were to rise rapidly. In another novel aspect, a novel level-shifting inverter drives the second NFET. The level-shifting inverter uses a pull down resistor to avoid snap-back and also isolates the gate of the second NFET from a capacitively loaded third supply node.
摘要:
A semiconductor die includes resistor-capacitor (RC) clamping circuitry for electrostatic discharge (ESD) protection of the semiconductor die. The RC clamping circuitry includes building blocks distributed in the pad ring and in the core area of the semiconductor die. The building blocks include at least one capacitor block in the core area. The RC clamping circuitry also includes chip level conductive layer connections between each of the distributed building blocks.
摘要:
Electrostatic discharge susceptibility is reduced when assembling a stacked IC device by coupling a ground plane of a first semiconductor device and a ground plane of a second semiconductor device to place the ground plane at substantially a same electrical potential. Active circuitry on the first semiconductor device and active circuitry on the second semiconductor device are electrically coupled after the ground planes are coupled. Electrically coupling the ground planes of the first and the second semiconductor device creates a preferred electrostatic discharge path to ground, thus reducing potential damage to sensitive circuit elements.