摘要:
The present invention presents a method for fabricating coil elements for magnetic write heads. A coil pattern is formed on a substrate using photolithographic techniques. The substrate is etched using reactive ion etching, creating a coil-shaped trench in the substrate. Thin film seed layers are deposited using ion beam deposition. The substrate is electroplated with metal filling the trenches with metal. The substrate is chemical mechanical polished to remove excess metal and planarize the air bearing surface of the write head.
摘要:
The present invention presents a method for fabricating coil elements for magnetic write heads. A coil pattern is formed on a substrate using photolithographic techniques. The substrate is etched using reactive ion etching, creating a coil-shaped trench in the substrate. Thin film seed layers are deposited using ion beam deposition. The substrate is electroplated with metal filling the trenches with metal. The substrate is chemical mechanical polished to remove excess metal and planarize the air bearing surface of the write head.
摘要:
A Damascene process is provided for manufacturing a coil structure for a magnetic head. During the manufacturing process, an insulating layer is initially deposited after which a photoresist layer is deposited. A silicon dielectric layer is then deposited on the photoresist layer. After masking the silicon dielectric layer, at least one channel is etched in the photoresist layer and the silicon dielectric layer. Then, a conductive seed layer is deposited in the at least one channel. The at least one channel is then ready to be filled with a conductive material and chemically/mechanically polished to define a coil structure.
摘要:
A Damascene process is provided for manufacturing a coil structure for a magnetic head. During the manufacturing process, an insulating layer is initially deposited after which a photoresist layer is deposited. A silicon dielectric layer is then deposited on the photoresist layer. After masking the silicon dielectric layer, at least one channel is etched in the photoresist layer and the silicon dielectric layer. Then, a conductive seed layer is deposited in the at least one channel. The at least one channel is then ready to be filled with a conductive material and chemically/mechanically polished to define a coil structure.
摘要:
The present invention presents a method for fabricating coil elements for magnetic write heads. A coil pattern is formed on a substrate using photolithographic techniques. The substrate is etched using reactive ion etching, creating a coil-shaped trench in the substrate. Thin film seed layers are deposited using ion beam deposition. The substrate is electroplated with metal filling the trenches with metal. The substrate is chemical mechanical polished to remove excess metal and planarize the air bearing surface of the write head.
摘要:
A Damascene process is provided for manufacturing a coil structure for a magnetic head. During the manufacturing process, an insulating layer is initially deposited after which a photoresist layer is deposited. A silicon dielectric layer is then deposited on the photoresist layer. After masking the silicon dielectric layer, at least one channel is etched in the photoresist layer and the silicon dielectric layer. Then, a conductive seed layer is deposited in the at least one channel. The at least one channel is then ready to be filled with a conductive material and chemically/mechanically polished to define a coil structure.
摘要:
The first and second side surfaces of either a bottom spin valve sensor or a top spin valve sensor are notched so as to enable a reduction in the magnetoresistive coefficient of side portions of the sensor beyond the track width region thereby minimizing side reading by the sensor. The first and second notches of the spin valve sensor are then filled with layers in various embodiments of the invention to complete the spin valve sensor.
摘要:
Methods of making a read head with improved contiguous junctions are described. After sensor layer materials are deposited over a substrate, a lift-off mask is formed over the sensor layer materials in a central region which is surrounded by end regions. Ion milling is performed with use of the lift-off mask such that the sensor layer materials in the end regions are removed and those in the central region remain to form a read sensor. A high-angle ion mill (e.g. between 45–80 degrees) is then performed to remove redeposited material from side walls of the lift-off mask. Next, a reactive ion etch (RIE) is used to reduce the thickness and the width of the lift-off mask and to remove capping layer materials from the top edges of the read sensor. With the reduced-size lift-off mask in place, hard bias and lead layers are deposited adjacent the read sensor as well as over the mask. The reduced-size lift-off mask allows the amount of hard bias to be increased in the contiguous junction region, and the edges of the leads to be deposited more closely over the top edges of the read sensor. Advantageously, the stability of the sensor is enhanced and the transfer curve is improved using a method which can be controlled independently from the initial mask structure and ion milling process. No critical alignments or multiple photoresist processes are necessary.
摘要:
During manufacture, a magnetoresistive sensor having a ferromagnetic free layer is commonly provided with a tantalum cap layer. The tantalum cap layer provides protection to the sensor during manufacture and then is typically removed after performing annealing. The removal of the tantalum cap with a fluorine reactive ion etch leaves low volatility tantalum/fluorine byproducts. The present invention provides a method of using an argon/hydrogen reactive ion etch to remove the tantalum/fluorine byproducts. The resulting sensor has far less damage resulting from the presence of the fluorine byproducts.
摘要:
A method for modifying a substrate surface, including the step of applying a high density plasma to the substrate surface in the presence of a hydrofluorocarbon gas and a carrier gas to form an antiwetting layer on the substrate surface. Optionally, the method including a cleaning step of contacting the slider surface with a carrier gas for a period of time effective to clean the surface.