摘要:
A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
摘要:
A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
摘要:
A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
摘要:
A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
摘要:
The present invention provides a method of forming a high-k dielectric layer on a semiconductor wafer. A metal silicate dielectric layer is initially deposited on the wafer. A dopant having dissociable oxygen is introduced into the metal silicate on the wafer. According to one embodiment the metal silicate comprises a group IV metal and the dopant is an oxide of one of an alkaline metal and an alkaline earth metal. According to another embodiment the metal silicate comprises a group III metal.
摘要:
The present invention provides a method of forming a high-k dielectric layer on a semiconductor wafer. A metal silicate dielectric layer is initially deposited on the wafer. A dopant having dissociable oxygen is introduced into the metal silicate on the wafer. According to one embodiment the metal silicate comprises a group IV metal and the dopant is an oxide of one of an alkaline metal and an alkaline earth metal. According to another embodiment the metal silicate comprises a group III metal.
摘要:
The present invention provides a method of forming a high-k dielectric layer on a semiconductor wafer. A metal silicate dielectric layer is initially deposited on the wafer. A dopant having dissociable oxygen is introduced into the metal silicate on the wafer. According to one embodiment the metal silicate comprises a group IV metal and the dopant is an oxide of one of an alkaline metal and an alkaline earth metal. According to another embodiment the metal silicate comprises a group IV metal.
摘要:
The present invention provides a method of forming a high-k dielectric layer on a semiconductor wafer. A metal silicate dielectric layer is initially deposited on the wafer. A dopant having dissociable oxygen is introduced into the metal silicate on the wafer. According to one embodiment the metal silicate comprises a group IV metal and the dopant is an oxide of one of an alkaline metal and an alkaline earth metal. According to another embodiment the metal silicate comprises a group III metal.
摘要:
A method of forming a self-aligned logic cell. A nanotube layer is formed over the bottom electrode. A clamp layer is formed over the nanotube layer. The clamp layer covers the nanotube layer, thereby protecting the nanotube layer. A dielectric layer is formed over the clamp layer. The dielectric layer is etched. The clamp layer provides an etch stop and protects the nanotube layer. The clamp layer is etched with an isotropic etchant that etches the clamp layer underneath the dielectric layer, creating an overlap of the dielectric layer, and causing a self-alignment between the clamp layer and the dielectric layer. A spacer layer is formed over the nanotube layer. The spacer layer is etched except for a ring portion around the edge of the dielectric layer. The nanotube layer is etched except for portions that are underlying at least one of the clamp layer, the dielectric layer, and the spacer layer, thereby causing a self-alignment between the clamp layer, the overlap to the dielectric layer, the spacer layer, and the nanotube layer.
摘要:
A method of forming a self-aligned logic cell. A nanotube layer is formed over the bottom electrode. A clamp layer is formed over the nanotube layer. The clamp layer covers the nanotube layer, thereby protecting the nanotube layer. A dielectric layer is formed over the clamp layer. The dielectric layer is etched. The clamp layer provides an etch stop and protects the nanotube layer. The clamp layer is etched with an isotropic etchant that etches the clamp layer underneath the dielectric layer, creating an overlap of the dielectric layer, and causing a self-alignment between the clamp layer and the dielectric layer. A spacer layer is formed over the nanotube layer. The spacer layer is etched except for a ring portion around the edge of the dielectric layer. The nanotube layer is etched except for portions that are underlying at least one of the clamp layer, the dielectric layer, and the spacer layer, thereby causing a self-alignment between the clamp layer, the overlap to the dielectric layer, the spacer layer, and the nanotube layer.