摘要:
A dual inlaid interconnect fabrication method using a temporary filler in a via during trench etch and removal of the filler after trench etch. This provides via bottom protection during trench etch.
摘要:
A method of fabricating an interconnect wherein there is initially provided a first layer of electrically conductive interconnect (3). A via (7) is formed which is defined by walls extending to the first layer of interconnect. A layer of titanium (9) is formed between the electrically conductive interconnect and the first layer of electrically conductive metal (11). A first layer of electrically conductive metal is formed on the walls of the via having a predetermined etch rate relative to a specific etch species and a second layer of electrically conductive metal (13) is formed on the first layer of electrically conductive metal having an etch rate relative to the specific etch species greater than the first layer and which preferably extends into the via. The first layer of electrically conductive interconnect is preferably aluminum, the first layer of electrically conductive metal is preferably a metal containing from about one percent by weight to about one hundred percent copper and the rest essentially aluminum and the second layer of electrically conductive metal is preferably copper doped aluminum having a lower copper content than the first electrically conductive layer.
摘要:
A structure and process is provided for filling integrated circuit cavities such as contacts and vias. These structures are filled at relatively low temperatures of no more than about 300° C., and preferably between about 20°-275° C., which temperature range permits for the use of low dielectric constant (&kgr;) polymers (i.e., &kgr;
摘要:
AlCu alloys with higher Cu content are added in thin layers within a metallization structure. The increased Cu content provided by the thin layer improves interconnect reliability and reduces the effects of electromigration with minimal effect on plasma etch and cleanup processes.
摘要:
A structure and process is provided for filling integrated circuit cavities such as contacts and vias. These structures are filled at relatively low temperatures of no more than about 300° C., and preferably between about 20°-275° C., which temperature range permits for the use of low dielectric constant (&kgr;) polymers (i.e., &kgr;
摘要:
A method for forming a metal interconnect having a self-aligned transition metal-nitride barrier (124). After the metal interconnect lines (118) are formed, a transition metal (120) is deposited over the surface of the metal interconnect lines (118) and reacted in to form a metal-compound (122). The metal-compound (122) is then annealed in a nitrogen ambient to form a barrier layer (114) at the surface of the metal interconnect lines (118).
摘要:
An integrated circuit structure including copper metallization (20, 32, 42), and a method of fabricating the same are disclosed. The structure includes a doped region (7) of a silicon substrate (9), which is typically clad with a metal silicide film (12) formed by way of direct react silicidation. At contact locations (CT) at which the copper metallization (20, 32, 42) is to make contact to the doped region (7), a chemically-densified barrier layer (16, 30, 38) provides a diffusion barrier to the overlying copper metallization (20, 32, 42). The chemically-densified barrier layer (16, 30, 38) is formed by an anneal of the structure to react impurities (14, 28, 36) with the underlying refractory-metal-based film (12, 34); the impurities are introduced by way of wet chemistry, plasma bombardment, or from the ambient in which the structure is annealed.
摘要:
A method for minimizing reaction between metal conductors and other metals to minimize change in sheet resistance of the conductors upon heat treatment which includes providing a substrate. The substrate is preferably one of a dielectric, a metal or a semiconductor. A metallic diffusion barrier layer, preferably one of TiN, TiW or TiWN and preferably having a thickness of from about 10 nanometers to about 100 nanometers, is deposited on the substrate, preferably by one of sputtering, electron beam evaporation or chemical vapor deposition. The exposed surface of the metallic diffusion barrier layer is treated with a plasma, preferably an oxygen plasma, a nitrous oxide plasma or a plasma of an oxygen-containing species. An electrical conductor, preferably one of aluminum, aluminum-metal alloys, copper or copper-metal alloys and preferably having a thickness of from about 100 nanometers to about 1200 nanometers, is then deposited on the plasma-treated surface of the metallic diffusion barrier layer. The layers can be formed as one of a blanket or continuous films over the substrate. The conductor can then be patterned.
摘要:
A method to improve the texture of titanium and aluminum to reduce electromigration by controlling the deposition conditions and the texture of the substrates. Aluminum films can develop strong texture, when titanium is used underneath aluminum. However, to prevent the interaction between aluminum and titanium, a layer of TiN or other barrier is necessary. Fortunately, TiN has a similar atom arrangement on the plane as that of aluminum and titanium . Therefore, by controlling the orientation of titanium using a pre-sputter argon etch and low titanium deposition temperature, the texture of titanium can be transferred to TiN, and subsequently to aluminum.
摘要:
A diffusion barrier trilayer 42 is comprised of a bottom layer 44, a seed layer 46 and a top layer 48. The diffusion barrier trilayer 42 prevents reaction of metallization layer 26 with the top layer 48 upon heat treatment, resulting in improved sheet resistance and device speed.