摘要:
A stator core assembly comprising adjacent packages of stacked lamination sheets that are separated by a plurality of radially extending spacer blocks, and each adjacent pair of spacer blocks define in cooperation with adjacent axially spaced laminations, a plurality of radial cooling ducts, each duct having a least one lamination surface having plurality of concavities.
摘要:
A component is disclosed. The component includes a substrate comprising an outer surface and an inner surface. The inner surface defines at least one hollow, interior space, and the outer surface defines one or more grooves that extend at least partially along the outer substrate surface and have a respective base. One or more access holes are formed through the base of a respective groove, to connect the groove in fluid communication with the respective hollow interior space. The component further includes a coating comprising one or more layers disposed over at least a portion of the outer substrate surface. The groove(s) and the coating together define one or more channels for cooling the component. One or more trenches are formed through one or more coating layers and at least partially define at least one exit region for the cooling channel(s). A method of fabricating a component is also provided.
摘要:
A temperature measurement system includes at least one filament configured to emit thermal radiation in a relatively broad and substantially continuous wavelength band that is at least partially representative of a temperature of the at least one filament. The system also includes an optical system configured to receive at least a portion of the thermal radiation emitted from the filament. The optical system includes a wavelength splitting device configured to split the emitted thermal radiation into at least one relatively narrow wavelength band of thermal radiation. The optical system also includes a detector array configured to receive the at least one relatively narrow wavelength band of thermal radiation and to generate electrical signals at least partially representative of the received thermal radiation. The temperature measurement system further includes a controller communicatively coupled to the detector array. The controller is configured to transform the generated electrical signals to a temperature indication using a predetermined conversion module.
摘要:
A temperature measurement system includes at least one filament configured to emit thermal radiation in a relatively broad and substantially continuous wavelength band that is at least partially representative of a temperature of the at least one filament. The system also includes an optical system configured to receive at least a portion of the thermal radiation emitted from the filament. The optical system includes a wavelength splitting device configured to split the emitted thermal radiation into at least one relatively narrow wavelength band of thermal radiation. The optical system also includes a detector array configured to receive the at least one relatively narrow wavelength band of thermal radiation and to generate electrical signals at least partially representative of the received thermal radiation. The temperature measurement system further includes a controller communicatively coupled to the detector array. The controller is configured to transform the generated electrical signals to a temperature indication using a predetermined conversion module.
摘要:
A component is disclosed. The component includes a substrate comprising an outer surface and an inner surface. The inner surface defines at least one hollow, interior space, and the outer surface defines one or more grooves that extend at least partially along the outer substrate surface and have a respective base. One or more access holes are formed through the base of a respective groove, to connect the groove in fluid communication with the respective hollow interior space. The component further includes a coating comprising one or more layers disposed over at least a portion of the outer substrate surface. The groove(s) and the coating together define one or more channels for cooling the component. One or more trenches are formed through one or more coating layers and at least partially define at least one exit region for the cooling channel(s). A method of fabricating a component is also provided.
摘要:
A component includes a substrate having outer and inner surfaces, where the inner surface defines at least one hollow, interior space. The outer surface defines pressure side and suction side walls, which are joined together at leading and trailing edges of the component. The outer surface defines one or more grooves that extend at least partially along the pressure or suction side walls in a vicinity of the trailing edge. Each groove is in fluid communication with a respective hollow, interior space. The component further includes a coating disposed over at least a portion of the outer substrate surface. The coating comprises at least a structural coating that extends over the groove(s), such that the groove(s) and the structural coating together define one or more channels for cooling the trailing edge. A method of forming cooling channels in the vicinity of the trailing edge is also provided.
摘要:
A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space, and each groove extends at least partially along the substrate and has a base. The manufacturing method further includes forming one or more access holes through the base of a respective groove, to connect the groove in fluid communication with the respective hollow interior space. The manufacturing method further includes forming at least one connecting groove in the component, such that each connecting groove intersects at least a subset of the one or more grooves. The manufacturing method further includes disposing a coating over at least a portion of the outer surface of the substrate, such that the groove(s) and the coating together define one or more channels for cooling the component. The coating does not completely bridge the connecting groove, such that the connecting groove at least partially defines an exit region for the respective cooling channel(s).
摘要:
A component includes a substrate that has outer and inner surfaces. The inner surface defines at least one hollow, interior space. The outer surface defines pressure and suction sidewalls that are joined together at leading and trailing edges of the component and together form an airfoil portion of the component. The outer substrate surface further defines at least one platform and at least one fillet that extends between and integrally connects the airfoil to the respective platform. The outer surface defines one or more grooves that extend at least partially along a respective fillet. Each groove is in fluid communication with a respective hollow, interior space. The component further includes a coating disposed over at least a portion of the outer substrate surface and including at least a structural coating that extends over the groove(s). The groove(s) and the structural coating together define channel(s) for cooling the respective fillet.
摘要:
A manufacturing method is provided. The manufacturing method includes forming one or more grooves in a component comprising a substrate. Each groove extends at least partially along the substrate and has a base, a top and at least one discharge end. The manufacturing method further includes forming a crater, such that the crater is in fluid connection with the respective discharge end for each groove, and disposing a coating over at least a portion of an outer surface of the substrate. The groove(s) and the coating together define one or more channels for cooling the component. The coating does not completely bridge each of the one or more craters, such that each crater defines a film exit. A component with cratered film exits is also provided.
摘要:
A method of modifying an end wall contour is provided. The method includes creating a weld pool using a laser, adding a metal or a ceramic powder or a wire filler to the melt pool and modifying the part of the turbine in a manner that results in a change of about 0.005 to about 50 volume percent in the part of the turbine. The weld pool is created on a turbine component and contains molten metal or ceramic derived as a result of a heat interaction between the laser and the turbine component.