摘要:
A non-volatile logic circuit includes an input section, a control section and an output section. The input section has perpendicular magnetic anisotropy and has a ferromagnetic layer whose magnetization state is changeable. The control section includes a ferromagnetic layer. The output section is provided in a neighborhood of the input section and the control section and includes a magnetic tunnel junction element whose magnetization state is changeable. The magnetization state of the input section is changed based on the magnetization state. A magnetization state of the magnetic tunnel junction element of the output section which state is changed based on the magnetization state of the ferromagnetic material of the control section and the magnetization state of the ferromagnetic material of the input section.
摘要:
A nonvolatile latch circuit includes: a latch circuit; a first magnetoresistance element and a second magnetoresistance element; and a current supply portion. The latch circuit temporarily holds data. Each of the first magnetoresistance element and the second magnetoresistance element includes a first magnetic layer and a second magnetic layer that are stacked with an insulating film sandwiched therebetween. The current supply portion complementarily changes magnetization states of the first magnetoresistance element and the second magnetoresistance element based on a state of the latch circuit. The first magnetic layer of the first magnetoresistance element and the first magnetic layer of the second magnetoresistance element are series-connected to each other in. The latch circuit has a function that brings data corresponding to the magnetization states to data held by the latch circuit.
摘要:
A nonvolatile latch circuit includes: first and second inverters cross-coupled to hold 1-bit data; first and second magnetoresistive elements each having first to third terminals; and a current supply circuitry configured to supply a magnetization reversal current for changing the magnetization states of the first and second maqnetoresistive elements in response to the 1-bit data. The power terminal of the first inverter is connected to the first terminal of the first magnetoresistive element and the power terminal of the second inverter is connected to the first terminal of the second magnetoresistive element. The current supply circuitry is configured to supply the magnetization reversal current to the second terminals of the first and second magnetoresistive elements. The third terminal of the first magnetoresistive element is electrically connected to the third terminal of the second magnetoresistive element.
摘要:
A nonvolatile latch circuit includes: a latch circuit; a first magnetoresistance element and a second magnetoresistance element; and a current supply portion. The latch circuit temporarily holds data. Each of the first magnetoresistance element and the second magnetoresistance element includes a first magnetic layer and a second magnetic layer that are stacked with an insulating film sandwiched therebetween. The current supply portion complementarily changes magnetization states of the first magnetoresistance element and the second magnetoresistance element based on a state of the latch circuit. The first magnetic layer of the first magnetoresistance element and the first magnetic layer of the second magnetoresistance element are series-connected to each other in. The latch circuit has a function that brings data corresponding to the magnetization states to data held by the latch circuit.
摘要:
A magnetoresistive element 10 having a memory cell 100 according to the present invention contains a first lower terminal n1 and a second lower terminal n2 respectively connected to both ends of a conductive layer 3 whose longitudinal direction is different from the column direction (X direction). Further, the gates of the first transistors M1 respectively included in two memory cells among the plurality of memory cells 100 and adjacent to each other in a row direction (Y direction) are commonly connected to a first word line 14. As a result, without increase of the cell area, it becomes possible to reserve a margin in the dimension of the cell structure or in the process for MRMA.
摘要:
A nonvolatile latch circuit includes: first and second inverters cross-coupled to hold 1-bit data; first and second magnetoresistive elements each having first to third terminals; and a current supply circuitry configured to supply a magnetization reversal current for changing the magnetization states of the first and second maqnetoresistive elements in response to the 1-bit data. The power terminal of the first inverter is connected to the first terminal of the first magnetoresistive element and the power terminal of the second inverter is connected to the first terminal of the second magnetoresistive element. The current supply circuitry is configured to supply the magnetization reversal current to the second terminals of the first and second magnetoresistive elements. The third terminal of the first magnetoresistive element is electrically connected to the third terminal of the second magnetoresistive element.
摘要:
Provided is a nonvolatile resistor network assembly characterized by that: it comprises a first and a second resistor network which are each composed of a plurality of nonvolatile resistive elements connected together; it also comprises a write means for writing into the first and second resistor networks; and writing into the first and second resistor networks is performed by the use of the write means in a manner to make total resistances of respectively the first and second resistor networks different from each other. Further provided is a nonvolatile logic gate which performs logical operation using stored data determined by the total resistances of the respective nonvolatile resistor networks.
摘要:
Provided is an operation method which can be applied to a PRAM, an ReRAM, and a solid electrolyte memory which stores error correction codes, each of which comprises of symbols, each of which comprises bits, and which codes allow error correction in units of symbols. In the operation method, the respective symbols are read by using different reference cells 12. When a correctable error is detected in read data from data cells forming the error correction codes and corresponding to an input address, a data in a data cell corresponding to the error bit is corrected for a first error symbol of an one bit error pattern, and data in a reference cell that is used to read the second error symbol are corrected for a second error symbol related to a multi-bit error pattern.
摘要:
A logic gate 40 according to the present invention has a magnetoresistive element 1, a magnetization state control unit 50 and an output unit 60. The magnetoresistive element 1 has a laminated structure having N (N is an integer not smaller than 3) magnetic layers 10 and N−1 nonmagnetic layers that are alternately laminated. A resistance value R of the magnetoresistive element 1 varies depending on magnetization states of the N magnetic layers 10. The magnetization state control unit 50 sets the respective magnetization states of the N magnetic layers 10 depending on N input data. The output unit 60 outputs an output data that varies depending on the resistance value R of the magnetoresistive element 1.
摘要:
Provided is an operation method which can be applied to a PRAM, an ReRAM, and a solid electrolyte memory which stores error correction codes, each of which comprises of symbols, each of which comprises bits, and which codes allow error correction in units of symbols. In the operation method, the respective symbols are read by using different reference cells 12. When a correctable error is detected in read data from data cells forming the error correction codes and corresponding to an input address, a data in a data cell corresponding to the error bit is corrected for a first error symbol of an one bit error pattern, and data in a reference cell that is used to read the second error symbol are corrected for a second error symbol related to a multi-bit error pattern.