Abstract:
There are provided a method of manufacturing perovskite powder, and perovskite powder and a multilayer ceramic electronic component manufactured thereof. The manufacturing method includes: washing metal oxide hydrate to remove impurities therefrom; adding pure water and an acid or a base to the metal oxide hydrate to prepare a metal oxide sol; mixing the metal oxide sol with a metal salt to form perovskite particle nuclei; and conducting grain growth of the perovskite particle nuclei by hydrothermal treatment to produce perovskite powder. The method of manufacturing perovskite powder and the perovskite powder manufactured by the same have advantages such as excellent crystallinity, reduced generation of fine powder, and favorable dispersion properties.
Abstract:
There are provided a dielectric composition, a method of fabricating the same, and a multilayer ceeramic electronic component using the same. The dielectric composition includes a perovskite powder particle having a surface on which a doping layer is formed, the doping layer being doped with at least one material selected from a group consisting of alkaline earth elements and boron group elements, and rare earth elements.When a perovskite powder particle is synthesized by using a hydrothermal synthesis method, a doping layer doped with at least one material selected from the group consisting of alkaline earth elements and boron group elements and rare earth elements is formed on a surface of the perovskite powder particle, such that a dielectric composition having excellent reliability, dielectric properties, and electric properties can be fabricated.
Abstract:
A multilayer ceramic capacitor includes: a ceramic body including dielectric layers and first and second internal electrodes disposed to face each other with each of the dielectric layers interposed therebetween; and first and second external electrodes disposed on external surfaces of the ceramic body and electrically connected to the first and second internal electrode, respectively, wherein the dielectric layer includes dielectric grains having a core-shell structure including a core and a shell, and a domain wall is disposed in the shell.
Abstract:
A multilayer ceramic electronic component includes a ceramic body in which dielectric layers and internal electrodes are alternately stacked. The dielectric layers contain at least one dielectric grain having a ratio of a long axis to a short axis that is 3.5 or more. The internal electrodes contain a ceramic component containing a grain growth adjusting ingredient for dielectric grains. Each dielectric layer includes interfacial portions adjacent to the internal electrodes and a central portion disposed between the interfacial portions, and concentrations of the grain growth adjusting ingredient in the interfacial portions and the central portion are different from each other.
Abstract:
A multilayer ceramic electronic component includes a plurality of dielectric layers; and internal electrodes disposed on the dielectric layers and containing an additive. The additive contains lithium (Li) and a dielectric material.
Abstract:
A multilayer ceramic capacitor includes: a ceramic body including dielectric layers and first internal electrodes and second internal electrodes disposed to face each other with one of the dielectric layers interposed therebetween; and first and second external electrodes disposed on external surfaces of the ceramic body and electrically connected to the first and second internal electrodes, respectively. The dielectric layer includes dielectric grains, a grain boundary is present between at least two dielectric grains of the dielectric grains, and a Si/Ti mole ratio in the grain boundary satisfies 15% to 40%.
Abstract:
A multilayer ceramic capacitor includes: a ceramic body including dielectric layers and first internal electrodes and second internal electrodes disposed to face each other with one of the dielectric layers interposed therebetween; and first and second external electrodes disposed on external surfaces of the ceramic body and electrically connected to the first and second internal electrodes, respectively. The dielectric layer includes dielectric grains, a grain boundary is present between at least two dielectric grains of the dielectric grains, and a Si/Ti mole ratio in the grain boundary satisfies 15% to 40%.
Abstract:
There is provided a multilayer ceramic electronic component including: a ceramic body in which internal electrodes and dielectric layers containing a barium titanate-based compound containing calcium (Ca) are alternately stacked; and external electrodes disposed on outer surfaces of the ceramic body and electrically connected to the internal electrodes. The dielectric layer includes interfacial portions adjacent to the internal electrodes and a central portion disposed between the interfacial portions, the interfacial portion having a calcium (Ca) concentration higher than that of the central portion.
Abstract:
There are provided a method of manufacturing a ceramic powder having a perovskite structure and a ceramic powder having a perovskite structure manufactured by the same. The method includes: mixing a compound of an element corresponding to site A in an ABO3 perovskite structure as well as a compound of an element corresponding to site B in the same structure, with supercritical water in a continuous mode to form seed crystals; and mixing the seed crystals in a batch mode to conduct grain growth thereof.
Abstract:
A dielectric composition is a barium titanate-based dielectric composition and includes a barium titanate particle including a major axis, a minor axis disposed on the same plane as the major axis, and a vertical axis perpendicular to both the major axis and the minor axis, and a ratio of a length of the major axis to a length of the vertical axis is within a range from 1.5:1 to 30:1.