Abstract:
Disclosed is a fifth generation (5G) or pre-5G communication system for supporting data transmission rate higher than that of a fourth generation (4G) communication system such as long term evolution (LTE). The objective of the present disclosure is to detect a mismatch of an encryption parameter in a wireless communication system, and an operating method of a reception end comprises the steps of: receiving, from a transmission end, a packet including information related to a serial number of the packet and an encryption parameter determined on the basis of the serial number; determining whether the encryption parameter determined by the reception end is mismatched, on the basis of the information related to the serial number and the encryption parameter.
Abstract:
A cooperative caching method and apparatus for reducing data access time and data acquisition cost in a mobile communication system are provided. The cooperative caching method of a local base station in a mobile communication system using caches of base stations cooperatively connected with each other includes determining, when a request for data is received from a client, whether the data is stored in the cache of the local base station; sending, to a home base station, upon determining that the data is not stored in the cache, a request for the data; acquiring the data from one of the home base station and a server according to whether the data is stored in the home base station; and serving the data to the client.
Abstract:
Provided are a method of pre-treating a substrate and a method of directly forming graphene by using the method of pre-treating the substrate. In the method of pre-treating the substrate in the method of directly forming graphene, according to an embodiment, the substrate is pre-treated by using a pre-treatment gas including at least a carbon source and hydrogen. The method of directly forming graphene includes a process of pre-treating a substrate and a process of directly growing graphene on the substrate that is pre-treated. The process of pre-treating the substrate is performed according to the method of pre-treating the substrate.
Abstract:
A substrate processing apparatus includes: configured to support a plurality of substrates; a chamber sidewall surrounding at least a side surface of the substrate support; and an upper plate including a plurality of plate portions on the substrate support and spaced apart from the substrate support. The plurality of plate portions and the substrate support collectively at least partially define a plurality of process regions between the plurality of plate portions and the substrate support and a separation between at least two process regions of the plurality of process regions. The plurality of process regions include a pretreatment process region between the pretreatment process plate portion and the substrate support and having a first height, and a deposition process region between the deposition process plate portion and the substrate support and having a second height, greater than the first height.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.According to the present invention, a method for connecting a first device in a short-range wireless communication system comprises the steps of: transmitting, to a second device, a discovery signal including a connection information request; receiving, from the second device, a discovery response signal including information on a third device connected with the second device; and establishing a connection with the third device on the basis of the discovery response signal.
Abstract:
The present disclosure relates to a technology for a sensor network, a machine to machine (M2M), a machine type communication (MTC), and internet of things (IoT). The present disclosure may be used for an intelligence service (smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, and security and safety-related service). An electronic device and an operation method for sharing a service or contents between electronic devices through a user's simple motion are provided. The method includes, displaying a user interface (UI) for contents, the UI comprising a object for sharing the contents, transmitting a signal for determining a distance between each of the at least another electronic device and the electronic device to at least another electronic device in response to an input for the object, and transmitting information for the contents to the first electronic device via a peer-to-peer (P2P) communication in response to receiving a first signal from a first electronic device.
Abstract:
A method of manufacturing a semiconductor device includes forming a target layer on a substrate, forming a mask pattern on the substrate including the target layer, and etching the target layer using the mask pattern as an etching mask to form a resulting pattern, wherein the mask pattern includes a first mask layer including an amorphous metal oxide, an amorphous insulating material including an amorphous metal oxide or no metal, and an upper mask layer and a lower mask layer covering upper and lower surfaces of the first mask layer, respectively.
Abstract:
The present disclosure relates to a communication technique and system thereof that fuses a 5G communication system with Internet of Things (IoT) technology to support a higher data rate than a 4G system. The present disclosure may be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or a connected car, a health care, a digital education, a retail, a security and safety related services, etc.) on the basis of 5G communication technology and IoT related technology. The present disclosure relates to a technology for a Sensor Network, a Machine to Machine (M2M), a Machine Type Communication (MTC) and an Internet of Things (IoT). The present disclosure may be utilized in the intelligent service (a smart home, a smart building, a smart city, a smart car or a connected car, a health care, a digital education, a retail, a security and safety related service, etc.) on the basis of the above technology. A key authentication method of an apparatus according to one embodiment of the present invention may comprise the steps of: receiving a signal from a terminal using a plurality of communication modules; determining whether the terminal is within a predetermined distance from the apparatus, on the basis of each signal received via the plurality of communication modules; and changing a control mode of a vehicle on which the apparatus is mounted, on the basis of whether the terminal is within the predetermined distance from the apparatus.
Abstract:
An inspection device includes a first processor, a second processor, and a server. The first processor detects first coordinates of first feature points from first images in a first image set. The second processor detects second coordinates of second feature points from second images in a second image set. The server generates reference coordinates based on the first coordinates and the second coordinates. The reference coordinates are transmitted to the first processor and the second processor. The first and second image sets correspond to scanned swaths on a wafer.