Abstract:
Provided is a system to provide natural utterance by a voice assistant and method thereof, wherein the system comprises an automatic speech recognition module for converting one or more unsegmented voice inputs into textual format in real-time. Further, a natural language understanding module extracts the information and intent of the user from the converted textual inputs, wherein the natural language understanding module comprises a communication classification unit for classifying the user inputs into one or more pre-defined classes. Further, the system comprises a processing module for analyzing and processing the inputs from the natural language understanding module and activity identification module, wherein the processing module provides real-time intuitive mingling responses based on the responses, contextual pauses and ongoing activity of the user.
Abstract:
A method and system to improve emergency call continuity by allowing inbound mobility towards non-member CSG cells is disclosed. The method enables the UE to detect an emergency call. Then the UE initiates an autonomous search procedure by itself, without need for network to configure the UE for proximity reporting. The method enables the UE to use non-member CSG cells for continuity of emergency calls. The method also enables the UE to confirm emergency call handling support provided by the target CSG cell before initiating handover.
Abstract:
The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
A user equipment (UE) and a method of cell selection by a UE are provided. The method includes maintaining a database for storing a multi-carrier availability status for a plurality of frequencies, wherein each frequency includes at least one of a multi-carrier configuration and a single-carrier configuration; determining whether a candidate cell corresponding to the multi-carrier configuration is available based on the multi-carrier availability status; and selecting the candidate cell corresponding to the multi-carrier configuration when a performance metric of the candidate cell is greater than a pre-defined threshold.
Abstract:
A user equipment (UE) and a method of cell selection by a UE are provided. The method includes maintaining a database for storing a multi-carrier availability status for a plurality of frequencies, wherein each frequency includes at least one of a multi-carrier configuration and a single-carrier configuration; determining whether a candidate cell corresponding to the multi-carrier configuration is available based on the multi-carrier availability status; and selecting the candidate cell corresponding to the multi-carrier configuration when a performance metric of the candidate cell is greater than a pre-defined threshold.
Abstract:
The present disclosure provides, a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
A method for reducing consumption of battery power of User Equipment (UE) during inter-frequency cell detection in a Heterogeneous Network (HetNet) is provided. The method includes receiving an indication from a serving cell operating on a first frequency layer about presence of a beacon signal transmission on the first frequency layer from a non-serving cell, an actual data transmission and reception of the non-serving cell occurs on a second frequency layer, determining whether the indication satisfies at least one triggering condition to initiate signal scanning on the first frequency layer for identifying the beacon signal transmission from the non-serving cell, scanning, when the received indication satisfies the triggering condition, the first frequency layer for identifying any beacon signal, decoding the beacon signal from the non-serving cell, and receiving assistance information from the serving cell to facilitate identification of the non-serving cell transmitting the beacon signals on the first frequency layer.
Abstract:
A user equipment (UE) and a method of cell selection by a UE are provided. The method includes maintaining a database for storing a multi-carrier availability status for a plurality of frequencies, wherein each frequency includes at least one of a multi-carrier configuration and a single-carrier configuration; determining whether a candidate cell corresponding to the multi-carrier configuration is available based on the multi-carrier availability status; and selecting the candidate cell corresponding to the multi-carrier configuration when a performance metric of the candidate cell is greater than a pre-defined threshold.
Abstract:
The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.