Abstract:
A three-dimensional semiconductor device includes gate electrodes sequentially stacked on a substrate, a channel structure penetrating the gate electrodes and being connected to the substrate, an insulating gap-fill pattern provided within the channel structure and surrounded by the channel structure as viewed in a plan view, and a conductive pattern on the insulating gap-fill pattern. At least a portion of the insulating gap-fill pattern is received in the conductive pattern, and at least a portion of the conductive pattern is interposed between at least that portion of the insulating gap-fill pattern and the channel structure.
Abstract:
A three-dimensional semiconductor device includes gate electrodes sequentially stacked on a substrate, a channel structure penetrating the gate electrodes and being connected to the substrate, an insulating gap-fill pattern provided within the channel structure and surrounded by the channel structure as viewed in a plan view, and a conductive pattern on the insulating gap-fill pattern. At least a portion of the insulating gap-fill pattern is received in the conductive pattern, and at least a portion of the conductive pattern is interposed between at least that portion of the insulating gap-fill pattern and the channel structure.
Abstract:
Disclosed is a three-dimensional semiconductor memory device including a carbon-containing layer on a substrate, a plurality of electrode interlayer dielectric layers and a plurality of electrode layers that are alternately stacked on the carbon-containing layer, a cell vertical pattern that penetrates at least some of the electrode interlayer dielectric layers and the electrode layers, and a semiconductor pattern between the cell vertical pattern and the carbon-containing layer. The substrate includes a plurality of first grains. The semiconductor pattern includes a plurality of second grains. An average size of the second grains is less than an average size of the first grains.
Abstract:
A semiconductor memory device and a method of fabricating the same. The device includes a plurality of gates vertically stacked on a top surface of a substrate with an epitaxial layer formed in the substrate, a vertical channel vertically penetrating the gates to be electrically connected to the epitaxial layer, and a memory layer provided between the vertical channel and the gates. The epitaxial layer has a top surface positioned at a level between a bottom surface of the lowermost one of the gates and the top surface of the substrate.