Abstract:
A protection system configured to protect plural DC voltage sources configured to be connected in parallel between first and second input terminals of a voltage inverter. The voltage inverter can convert a DC input voltage into an AC output voltage. Each DC voltage source is connected by a first electrical conductor to the first input terminal and by a second electrical conductor to the second input terminal. The protection system includes: for each DC voltage source, a first cut-off member and first detector of a defect of isolation of the first conductor with respect to an electrical ground, the first detector and associated first cut-off member connected in series between the corresponding DC voltage source and the first input terminal of the inverter; and a mechanism triggering, in event of detection of the isolation defect, the associated first cut-off member to open the electrical link corresponding to the first conductor.
Abstract:
In this method, the voltage outage load-side is an opening of the circuit breaker, and the circuit breaker is able to interrupt the flow of electric current in an electric connection including an electric conductor. The auxiliary unit comprises a current sensor for measuring the intensity of the current flowing in the electric conductor and a first detection means for detecting the voltage outage load-side from the circuit breaker. The method comprises the following steps: measuring the intensity of the current flowing in the electric conductor, detecting the voltage outage load-side from the electric circuit breaker, determining a cause of the detected voltage outage load-side from the circuit breaker, said cause being selected from the group consisting in: an electric overload, a short-circuit and a voltage drop.
Abstract:
Device for measuring at least one electrical variable of a current intended to flow in an electric apparatus, the electric apparatus comprising at least one connection terminal, each connection terminal being designed to be electrically connected to the end of a corresponding electric conductor, the device comprising at least one current sensor, each current sensor being configured for measuring the current flowing in a corresponding electric conductor. The device further comprises at least one electrically conductive spacer, each spacer being configured for being interposed between a respective connection terminal and the end of a corresponding electric conductor, and wherein each current sensor is further positioned around a respective spacer, to measure the current flowing through said spacer, between the electric conductor and the corresponding connection terminal.
Abstract:
In this method, the voltage outage load-side is an opening of the circuit breaker, and the circuit breaker is able to interrupt the flow of electric current in an electric connection including an electric conductor. The auxiliary unit comprises a current sensor for measuring the intensity of the current flowing in the electric conductor and a first detection means for detecting the voltage outage load-side from the circuit breaker. The method comprises the following steps: measuring the intensity of the current flowing in the electric conductor, detecting the voltage outage load-side from the electric circuit breaker, determining a cause of the detected voltage outage load-side from the circuit breaker, said cause being selected from the group consisting in: an electric overload, a short-circuit and a voltage drop.
Abstract:
A magnetic connector for connecting an electrical unit to an electrical consumer unit includes at least one magnet, a conductive metal part secured to this magnet, a connecting cable fixed to the conductive metal part, and a cap made of plastic material overmoulded on the connecting cable, the conductive metal part and the magnet, except for a contact surface of the magnet intended to make contact with a metal part of the electrical consumer unit.
Abstract:
A method that tests a differential protection device having a first and a second differential protection chain includes: a step of controlling the flow of a test signal for a duration smaller than a no-trip time, and steps of determining the state of the two differential protection chains after the flow of a test signal, of monitoring the conformity of the evolution of the protection chains, and of determining the state of the test. The differential protection device includes two differential protection chains and controls the flow of a test current for a duration smaller than a no-trip time. It includes modules for monitoring the evolution of the protection chains and determining the state of the test in order to control the opening of an electrical unit if the test is good. The device can be included in the electrical unit.
Abstract:
The invention relates to an electric arc detection method and device in which: samples of first, second and third filterings are determined, in parallel, for a signal for a current time window and for another time window, a correlation is determined among: a first correlation between said samples resulting from the first filtering and determined for the current window and samples resulting from the first filtering and determined for the other window; a second correlation between said samples resulting from the second filtering and determined for the current window and samples resulting from the second filtering and determined for the other window; a third correlation between said samples resulting from the third filtering and determined for the current window and samples resulting from the third filtering and determined for the other window; and an electric arc is detected as a function of at least said determined correlation.
Abstract:
A magnetic connector for connecting an electrical unit to an electrical consumer unit includes at least one magnet, a conductive metal part secured to this magnet, a connecting cable fixed to the conductive metal part, and a cap made of plastic material overmoulded on the connecting cable, the conductive metal part and the magnet, except for a contact surface of the magnet intended to make contact with a metal part of the electrical consumer unit.
Abstract:
A differential protection device is designed for an electric disconnecting apparatus, the disconnecting apparatus comprising at least one fixed contact suitable for being connected to a corresponding electrical conductor, at least one movable contact, between a closed position, the movable contact being electrically connected to the corresponding fixed contact in the closed position and electrically isolated from the corresponding fixed contact in an open position, and an actuator for activating opening of the movable contacts when a differential fault is detected. The differential protection device comprises a controller for controlling the actuator. The differential protection device further comprises measuring circuitry for measuring an electrical variable associated with the controller and inhibiting circuitry for inhibiting the controller when the measured electrical variable satisfies a predetermined criterion.
Abstract:
A protection system configured to protect plural DC voltage sources configured to be connected in parallel between first and second input terminals of a voltage inverter. The voltage inverter can convert a DC input voltage into an AC output voltage. Each DC voltage source is connected by a first electrical conductor to the first input terminal and by a second electrical conductor to the second input terminal. The protection system includes: for each DC voltage source, a first cut-off member and first detector of a defect of isolation of the first conductor with respect to an electrical ground, the first detector and associated first cut-off member connected in series between the corresponding DC voltage source and the first input terminal of the inverter; and a mechanism triggering, in event of detection of the isolation defect, the associated first cut-off member to open the electrical link corresponding to the first conductor.