Abstract:
A high-frequency acceleration type ion acceleration and transportation apparatus is a beamline after an ion beam is accelerated by a high-frequency acceleration system having an energy spread with respect to set beam energy and includes an energy analysis deflection electromagnet and a horizontal beam focusing element. In the ion acceleration and transportation apparatus, a double slit that is configured by an energy spread confining slit and an energy analysis slit is additionally disposed at a position at which energy dispersion and a beam size are to be appropriate. The position is determined based on a condition of the energy analysis deflection electromagnet and the horizontal beam focusing element, and the double slit performs energy separation and energy definition and decreases the energy spread of the ion beam by performing adjustment for a smaller energy spread while suppressing a decrease in the amount of a beam current.
Abstract:
During ion implantation into a wafer, an ion beam current is measured, a change in vacuum conductance which changes in accordance with a change of the location of a structure operating in a vacuum beam line chamber or a vacuum treatment chamber is obtained, furthermore, changes in degree of vacuum at one or plural places are detected using a vacuum gauge installed in the vacuum beam line chamber or the vacuum treatment chamber. The amount of an ion beam current is corrected using the obtained vacuum conductance and the detected degree of vacuum at one or plural places, and the dose amount implanted into the wafer is controlled.
Abstract:
An ion implantation apparatus includes: a plurality of units for accelerating an ion beam generated in an ion source; and a plurality of units for adjusting a scan beam and implanting ions into a wafer. A horizontal U-shaped folder type beamline having opposite long straight portions includes the plurality of units for adjusting the scan beam in a long straight portion to have substantially the same length as the ion source and the plurality of units for accelerating the ion beam.
Abstract:
A high-frequency acceleration type ion acceleration and transportation apparatus is a beamline after an ion beam is accelerated by a high-frequency acceleration system having an energy spread with respect to set beam energy and includes an energy analysis deflection electromagnet and a horizontal beam focusing element. In the ion acceleration and transportation apparatus, a double slit that is configured by an energy spread confining slit and an energy analysis slit is additionally disposed at a position at which energy dispersion and a beam size are to be appropriate. The position is determined based on a condition of the energy analysis deflection electromagnet and the horizontal beam focusing element, and the double slit performs energy separation and energy definition and decreases the energy spread of the ion beam by performing adjustment for a smaller energy spread while suppressing a decrease in the amount of a beam current.
Abstract:
A high-energy ion implanter includes: a beam generation unit that includes an ion source and a mass analyzer; a high-energy multi-stage linear acceleration unit that accelerates an ion beam so as to generate a high-energy ion beam; a high-energy beam deflection unit that changes the direction of the high-energy ion beam toward the wafer; and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The deflection unit is configured by a plurality of deflection electromagnets, and at least a horizontal focusing element is inserted between the plurality of deflection electromagnets.
Abstract:
During ion implantation into a wafer, an ion beam current is measured, a change in vacuum conductance which changes in accordance with a change of the location of a structure operating in a vacuum beam line chamber or a vacuum treatment chamber is obtained, furthermore, changes in degree of vacuum at one or plural places are detected using a vacuum gauge installed in the vacuum beam line chamber or the vacuum treatment chamber. The amount of an ion beam current is corrected using the obtained vacuum conductance and the detected degree of vacuum at one or plural places, and the dose amount implanted into the wafer is controlled.