Abstract:
A height measuring device includes a light source that emits light in a direction oblique to a top surface of a specimen, a slit that shapes the light from the light source to form a slit image on the specimen, an imaging element that detects reflected light reflected by the specimen, and an arithmetic unit. The arithmetic unit: identifies a slit image of the reflected light reflected by the top surface of the specimen from among a plurality of slit images based on respective positions of the plurality of slit images on a detection surface of the imaging element; and determines the height of the top surface of the specimen based on the position of the slit image of the reflected light reflected by the top surface of the specimen on the detection surface.
Abstract:
A beam current transmission system and method are disclosed. The beam current transmission system comprises an extraction device, a mass analyzer, a divergent element, a collimation element and a speed change and turning element, wherein an analysis plane of the mass analyzer is perpendicular to a convergent plane of the extracted beam, and after entering an entrance, the beam is converged on a convergent point in a plane perpendicular to the analysis plane, and then is diverged from the convergent point and transmitted to the divergent element from an exit; the collimation element is used for parallelizing the beam in a transmission plane of the beam; and the speed change and turning element is used for enabling the beam to change speed so as to achieve a target energy while the beam is deflected so that the transmission direction of the beam changes by a first pre-set angle. Through the coordinated cooperation among a plurality of beam current optical elements, a relatively wider distribution can be formed in a vertical plane, so the invention is suitable to the processing of a wafer with a large size and also ensure better injection uniformity on the premise of avoiding energy contamination.
Abstract:
A radiation analyzer includes a primary ray source that generates primary rays, an optical system applies the primary rays emitted from the primary ray source to a sample, an energy-dispersive radiation detector that detects radiation that has been generated from the sample when the primary rays have been applied to the sample, and a support that supports the radiation detector so that the tilt of the center axis (C) of the radiation detector with respect to the optical axis (Z) of the optical system can be changed.
Abstract:
In one aspect, an ion implantation system is disclosed, which comprises a deceleration system configured to receive an ion beam and decelerate the ion beam at a deceleration ratio of at least 2, and an electrostatic bend disposed downstream of the deceleration system for causing a deflection of the ion beam. The electrostatic bend includes three tandem electrode pairs for receiving the decelerated beam, where each electrode pair has an inner and an outer electrode spaced apart to allow passage of the ion beam therethrough. Each of the electrodes of the end electrode pair is held at an electric potential less than an electric potential at which any of the electrodes of the middle electrode pair is held and the electrodes of the first electrode pair are held at a lower electric potential relative to the electrodes of the middle electrode pair.
Abstract:
Disclosed herein is a micro stage using a piezoelectric element that can be reliably operated even in a vacuum environment. In a particle column requiring a high precision, for example, a microelectronic column, the micro stage can be used as a stage with micro or nano degree precision for alignment of parts of the column, or for moving a sample, and so on.
Abstract:
When a signal electron is detected by energy selection by combining and controlling retarding and boosting for observation of a deep hole, etc., the only way for focus adjustment is to use a change in magnetic field of an objective lens. However, since responsiveness of the change in magnetic field is poor, throughput reduces. A charged particle beam device includes: an electron source configured to generate a primary electron beam; an objective lens configured to focus the primary electron beam; a deflector configured to deflect the primary electron beam; a detector configured to detect a secondary electron or a reflection electron generated from a sample by irradiation of the primary electron beam; an electrode having a hole through which the primary electron beam passes; a voltage control power supply configured to apply a negative voltage to the electrode; and a retarding voltage control power supply configured to generate an electric field, which decelerates the primary electron beam, on the sample by applying the negative voltage to the sample, wherein the charged particle beam device performs focus adjustment while an offset between the voltage applied to the electrode and the voltage applied to the sample is being kept constant.
Abstract:
A radiation analyzer includes a primary ray source that generates primary rays, an optical system applies the primary rays emitted from the primary ray source to a sample, an energy-dispersive radiation detector that detects radiation that has been generated from the sample when the primary rays have been applied to the sample, and a support that supports the radiation detector so that the tilt of the center axis (C) of the radiation detector with respect to the optical axis (Z) of the optical system can be changed.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.
Abstract:
A charged particle beam inspection apparatus includes: an electron gun emitting an electron beam; first and second condenser lenses used to focus the electron beam; a beam control panel disposed between the first and second condenser lenses; and a control unit performing stabilizing processing in which excitation currents respectively supplied to the first condenser lens and the second condenser lens are set to have predetermined values, thereby the current amount of the electron beam passing through an opening of the beam control panel is regulated so that the electron beam to be emitted onto the sample has a larger current amount than that at a measurement, and then the electron beam is emitted onto the sample for a predetermined time period. After the stabilizing processing, the control unit sets the values of the excitation currents back to values for the measurement in order to measure dimensions of the sample, the excitation currents respectively supplied to the first and second condenser lenses.
Abstract:
A charged particle beam deflection system provides a three or more level charged particle beam deflection arrangement and is therefore capable of extremely high speed and positional accuracy. The system preferably employs a major/minor magnetic deflection arrangement as well as orthogonal electrostatic deflectors at a level of speed and positional accuracy and which minimizes the need for dynamic correction to achieve high linearity and positioning accuracy at extremely low aberration levels. The system can also be made relatively noise insensitive by providing one or more split deflectors which are also useful in providing increased speed and adjustment of radial and azimuthal telecentricity. The use of a transfer lens allows the cluster and subfield deflectors to be optimally placed to exploit different forms of LAD to obtain telecentricity at all levels of the deflection hierarchy. The use of such lens assisted deflection allows the electron optical system and drivers therefor to be minimized in number or enabled noise to be reduced and adjustments of telecentricity to be made without increase of complexity over the prior art. By employing the deflection arrangement of the present invention in electron beam lithography apparatus, the throughput of such apparatus can be greatly improved.