Method for preparing noble metal catalyst

    公开(公告)号:US10272415B2

    公开(公告)日:2019-04-30

    申请号:US15500714

    申请日:2015-03-27

    摘要: The present invention discloses a method for preparing a catalyst, comprising the following steps: (1) taking a noble metal salt solution A, adding a modified alumina support material, stirring until uniform and standing; (2) drying the material obtained in step (1) in a vacuum, and calcining at 500° C.-600° C. for 1-4 hours to obtain a powder material containing the noble metal; (3) mixing the noble metal powder material, an adhesive and other components to be added, and ball-milling to obtain a uniform slurry; (4) preparing a noble metal solution B and adjusting pH to 0.5-1; and (5) mixing the slurry of the step (3) with the noble metal solution B, coating the mixture on a support, drying, and calcining at 500° C.-600° C. for 1-2 hours to obtain the target product. The method for preparing the catalyst of the present invention is simple, the conditions of the preparation process are easy to control and the preparation method has strong practicality. The prepared catalyst has a good quality, a low ignition temperature and a high catalytic conversion rate for methane at a relatively low temperature.

    Low-temperature NOx storage catalyst used for automobile exhaust purification and preparation method thereof

    公开(公告)号:US11612859B2

    公开(公告)日:2023-03-28

    申请号:US17619073

    申请日:2020-06-12

    摘要: A low-temperature NOx storage catalyst for automobile exhaust purification and a preparation method thereof. Loading a noble metal salt solution on molecular sieve by equal volume impregnation method, wherein the noble metal salt solution comprises palladium nitrate and platinum nitrate, and the molecular sieve comprises SSZ, SAPO and BETA, then drying at 60-120° C. for 2-6 h, roasting at 500-550° C. in air for 2-5 h, and further roasting at 750-850° C. in air for 2-5 h, and then mixing with aluminum sol, ball milling and pulping, and then coating the slurry on a carrier, wherein the loading on the coating is 100-250 g/L and the noble metal content is 10-150 g/ft3, drying at 60-120° C. for 2-6 h, then roasting at 500-550° C. in air for 2-5 h, and further continuing roasting at 750-850° C. in air for 2-5 h, to obtain the catalyst. Loading the noble metals Pt and Pd into a pore channel of a molecular sieve improves NOx storage capacity of a catalyst at low temperatures, and selecting a different type of molecular sieve as an NOx storage unit and increasing a roasting temperature of a molecular sieve material on which Pt and Pd are loaded significantly increases NOx storage capacity.