Abstract:
A semiconductor device according to an embodiment of the present disclosure includes a substrate, a gate structure disposed over the substrate, a dielectric structure disposed to contact a sidewall surface of the gate structure over the substrate, and a channel layer disposed on a sidewall surface of the dielectric structure over the substrate. The gate structure includes a gate electrode layer and an interlayer insulation structure which are alternately stacked. The interlayer insulation structure includes a metal-organic framework layer.
Abstract:
A nonvolatile memory device according to an embodiment includes a substrate having an upper surface, a source electrode structure disposed on the substrate, and a channel structure disposed over the substrate and disposed to contact one sidewall surface of the source electrode structure. In addition, the nonvolatile memory device includes a drain electrode structure disposed to contact one sidewall surface of the channel structure over the substrate. In addition, the nonvolatile memory device includes a plurality of ferroelectric structures extending in a first direction perpendicular to the substrate in the channel structure and disposed to be spaced apart from each other along the second direction perpendicular to the first direction. In addition, the nonvolatile memory device includes a gate electrode structure disposed in each of the plurality of ferroelectric structure to extend along the first direction.
Abstract:
A nonvolatile memory device according to an aspect of the present disclosure includes a substrate having a channel layer, a gate dielectric layer structure disposed on the channel layer, a ferroelectric layer disposed on the gate dielectric layer structure, and a gate electrode layer disposed on the ferroelectric layer. The gate dielectric layer structure has a positive capacitance. The ferroelectric layer has a negative capacitance. The gate dielectric layer structure includes a charge tunneling layer, a charge trap layer and a charge barrier layer disposed on the channel layer.
Abstract:
A resistive memory device includes a memory cell array including a unit memory cell coupled between a word line and a bit line, wherein the unit memory cell includes a data storage material and a non-silicon-substrate-based type bidirectional access device coupled in series, a path setting circuit coupled between the bit line and the word line, suitable for providing a program pulse toward the bit line or the word line based on a path control signal, a forward write command, and a reverse write command, and a control unit suitable for providing a write path control signal, a forward program command, and a reverse program command based on an external command signal.
Abstract:
A nonvolatile memory device according to an embodiment includes a substrate, a resistance change layer disposed on the substrate, a gate electrode layers disposed on the resistance change layer, and a first electrode pattern layer and a second electrode pattern layer that are disposed in the substrate and contact different portions of the resistance change layer. The resistance change layer includes movable oxygen vacancies or movable metal ions.
Abstract:
A nonvolatile memory device includes a substrate having an upper surface and a channel structure disposed over the substrate. The channel structure includes at least one channel layer pattern and at least one interlayer insulation layer pattern, which are alternately stacked in a first direction perpendicular to the upper surface, and the channel structure extends in a second direction perpendicular to the first direction. The nonvolatile memory device includes a resistance change layer disposed over the substrate and on at least a portion of one sidewall surface of the channel structure, a gate insulation layer disposed over the substrate and on the resistance change layer, and a plurality of gate line structures disposed over the substrate, each contacting a first surface of the gate insulation layer and disposed to be spaced apart from each other in the second direction.
Abstract:
A nonvolatile memory device according to an embodiment includes a substrate having an upper surface, and a gate structure disposed over the substrate. The gate structure includes at least one gate electrode layer pattern and at least one gate insulation layer pattern, which are alternately stacked along a first direction perpendicular to the upper surface. The gate structure extends in a second direction perpendicular to the first direction. The nonvolatile memory device includes a ferroelectric layer disposed on at least a portion of one sidewall surface of the gate structure. The one sidewall surface of the gate structure forms a plane substantially parallel to the first and second directions. The nonvolatile memory device includes a channel layer disposed on the ferroelectric layer, and a source electrode structure and a drain electrode structure disposed to contact the channel layer and spaced apart from each other in the second direction.
Abstract:
A nonvolatile memory device according to an embodiment includes a substrate, a source electrode structure disposed on the substrate, a channel structure disposed to be contact a sidewall surface of the source electrode structure, a resistance change memory layer disposed on a sidewall surface of the channel structure, a drain electrode structure disposed to contact the resistance change memory layer, a plurality of gate dielectric structures extending in the first direction and disposed to be spaced apart from each other in a second direction, and a plurality of gate electrode structures disposed to extend in the first direction in the plurality of the gate dielectric structure.
Abstract:
A semiconductor integrated circuit device and a method of fabricating the same are disclosed. The semiconductor integrated circuit device includes a resistive layer and an encapsulation film formed to surround an outer wall of the resistive layer The encapsulation film contains an oxygen absorbing ingredient.
Abstract:
A semiconductor device according to an embodiment of the present disclosure includes a substrate, a gate structure disposed over the substrate, a dielectric structure disposed to contact a sidewall surface of the gate structure over the substrate, and a channel layer disposed on a sidewall surface of the dielectric structure over the substrate. The gate structure includes a gate electrode layer and an interlayer insulation structure which are alternately stacked. The interlayer insulation structure includes a metal-organic framework layer.