Abstract:
In an embodiment, a unit delay circuit comprises a first path configured to delay a first input signal to output a first output signal when a selection signal is inactivated, a second path configured delay a second input signal to output a second output signal when the selection signal is inactivated, and a third path configured to delay the first input signal to output the second output signal when the selection signal is activated.
Abstract:
In an embodiment, a delay circuit comprises a delay loop controller outputting a signal obtained by operating a start signal and a delayed feedback clock signal output from outside the delay loop controller; and a loop counter configured to determine whether a predetermined delay time has elapsed since the start signal was input according to the delayed feedback clock signal and a predetermined loop count.
Abstract:
An injection-locked oscillator includes an oscillator and an injection circuit. The oscillator includes a first oscillation node through which a first oscillation signal is output and a second oscillation node through which a second oscillation signal is output, the second oscillation signal having a phase opposite to that of the first oscillation signal. The injection circuit provides an injection current between the first oscillation node and the second oscillation node according to a reference signal. The injection circuit includes a charging element configured to be charged or discharged in response to a reference signal and to provide the injection current between the first oscillation node and the second oscillation node.
Abstract:
A receiver includes a fixed delay unit configured to delay a first clock signal received from a clock channel by a predetermined time and output a second clock signal; a first delay unit configured to delay the first clock signal in response to a first control signal; a first data sampler configured to sample a data signal received from a data channel in response to an output signal of the first delay unit and output a first data signal; a second delay unit configured to delay the first data signal in response to a second control signal and output a second data signal; a second data sampler configured to sample the second data signal in response to the second clock signal; and a delay controller configured to output the first control signal and the second control signal.
Abstract:
A semiconductor device includes a signal delay circuit configured to output a plurality of multi-phase output signals by delaying a plurality of multi-phase input signals according to a plurality of delay codes, respectively; and a calibration circuit including an error detection circuit configured to provide phase difference information between signals selected among the plurality of the multi-phase output signals according to a variable delay code and a filter configured to provide the plurality of delay codes and the variable delay code, wherein the filter performs update operation to update the plurality of delay codes or the variable delay code.
Abstract:
An accelerator includes a key matrix register configured to store a key matrix, a query vector register configured to store a query vector; and a preprocessor configured to calculate similarities between the query vector and the key matrix.
Abstract:
An integrated circuit includes: a first path suitable for transferring an input signal from a first point to a second point; a second path suitable for transferring the input signal from the second point to a third point; a first phase comparator suitable for comparing an edge of the input signal at the first point with an edge of the input signal at the second point; and a second phase comparator suitable for comparing an edge of the input signal at the second point with an edge of the input signal at the third point, wherein the first path includes a first delay circuit whose delay value is adjusted based on a comparison result of the first phase comparator, and the second path includes a second delay circuit whose delay value is adjusted based on a comparison result of the second phase comparator.
Abstract:
A receiver includes a first input buffering circuit configured to output a first signal by comparing an input signal and a first offset signal; a second input buffering circuit configured to output a second signal by comparing the input signal and a second offset signal; and a signal mixing circuit configured to output an output signal with a corrected duty ratio by combining the first signal and the second signal.
Abstract:
A semiconductor device may include: a variable delay circuit configured to delay a data strobe signal according to a delay control signal and output a delayed data strobe signal; a data sampler configured to compare a level of a reference voltage and a value of a data signal in synchronization with the delayed data strobe signal, and determine a logic level of the value of the data signal, the data signal having a training pattern; and a control circuit configured to determine a delay amount of the data strobe signal and generate the delay control signal and the reference voltage according to an output signal of the data sampler.
Abstract:
A receiver includes a sampling circuit configured to sample a comparison result between an input signal and a plurality of threshold voltages according to a sampling clock signal; a clock controller configured to generate the sampling clock signal according to a clock control signal; and a control circuit configure to generate the clock control signal and the plurality of threshold voltages according to a target value and an output of the sampling circuit. The control circuit operates to control a ratio of a magnitude of a main cursor of the input signal and a magnitude of a precursor intersymbol interference to be the target value.