MEMS device with optimized geometry for reducing the offset due to the radiometric effect

    公开(公告)号:US11603310B2

    公开(公告)日:2023-03-14

    申请号:US16736485

    申请日:2020-01-07

    Abstract: A MEMS device with teeter-totter structure includes a mobile mass having an area in a plane and a thickness in a direction perpendicular to the plane. The mobile mass is tiltable about a rotation axis extending parallel to the plane and formed by a first and by a second half-masses arranged on opposite sides of the rotation axis. The first and the second masses have a first and a second centroid, respectively, arranged at a first and a second distance b1, b2, respectively, from the rotation axis. First through openings are formed in the first half-mass and, together with the first half-mass, have a first total perimeter p1 in the plane. Second through openings are formed in the second half-mass and, together with the second half-mass, have a second total perimeter p2 in the plane, where the first and the second perimeters p1, p2 satisfy the equation: p1×b1=p2×b2.

    MEMs inertial sensor with high resistance to stiction

    公开(公告)号:US11543428B2

    公开(公告)日:2023-01-03

    申请号:US16898350

    申请日:2020-06-10

    Abstract: An inertial structure is elastically coupled through a first elastic structure to a supporting structure so as to move along a sensing axis as a function of a quantity to be detected. The inertial structure includes first and second inertial masses which are elastically coupled together by a second elastic structure to enable movement of the second inertial mass along the sensing axis. The first elastic structure has a lower elastic constant than the second elastic structure so that, in presence of the quantity to be detected, the inertial structure moves in a sensing direction until the first inertial mass stops against a stop structure and the second elastic mass can move further in the sensing direction. Once the quantity to be detected ends, the second inertial mass moves in a direction opposite to the sensing direction and detaches the first inertial mass from the stop structure.

    MEMS tri-axial accelerometer with one or more decoupling elements

    公开(公告)号:US10768199B2

    公开(公告)日:2020-09-08

    申请号:US15639524

    申请日:2017-06-30

    Abstract: A MEMS tri-axial accelerometer is provided with a sensing structure having: a single inertial mass, with a main extension in a horizontal plane defined by a first horizontal axis and a second horizontal axis and internally defining a first window that traverses it throughout a thickness thereof along a vertical axis orthogonal to the horizontal plane; and a suspension structure, arranged within the window for elastically coupling the inertial mass to a single anchorage element, which is fixed with respect to a substrate and arranged within the window, so that the inertial mass is suspended above the substrate and is able to carry out, by the inertial effect, a first sensing movement, a second sensing movement, and a third sensing movement in respective sensing directions parallel to the first, second, and third horizontal axes following upon detection of a respective acceleration component. In particular, the suspension structure has at least one first decoupling element for decoupling at least one of the first, second, and third sensing movements from the remaining sensing movements.

    Accelerometric sensor in MEMS technology having high accuracy and low sensitivity to temperature and ageing

    公开(公告)号:US10591505B2

    公开(公告)日:2020-03-17

    申请号:US15280720

    申请日:2016-09-29

    Abstract: The accelerometric sensor has a suspended region, mobile with respect to a supporting structure, and a sensing assembly coupled to the suspended region and configured to detect a movement of the suspended region with respect to the supporting structure. The suspended region has a geometry variable between at least two configurations associated with respective centroids, different from each other. The suspended region is formed by a first region rotatably anchored to the supporting structure and by a second region coupled to the first region through elastic connection elements configured to allow a relative movement of the second region with respect to the first region. A driving assembly is coupled to the second region so as to control the relative movement of the latter with respect to the first region.

    Mems inertial sensor with high resistance to stiction

    公开(公告)号:US12117464B2

    公开(公告)日:2024-10-15

    申请号:US18147629

    申请日:2022-12-28

    CPC classification number: G01P15/125 B81C1/00968 G01P2015/0874

    Abstract: An inertial structure is elastically coupled through a first elastic structure to a supporting structure so as to move along a sensing axis as a function of a quantity to be detected. The inertial structure includes first and second inertial masses which are elastically coupled together by a second elastic structure to enable movement of the second inertial mass along the sensing axis. The first elastic structure has a lower elastic constant than the second elastic structure so that, in presence of the quantity to be detected, the inertial structure moves in a sensing direction until the first inertial mass stops against a stop structure and the second elastic mass can move further in the sensing direction. Once the quantity to be detected ends, the second inertial mass moves in a direction opposite to the sensing direction and detaches the first inertial mass from the stop structure.

    Microelectromechanical sensor device with reduced stress sensitivity

    公开(公告)号:US10274512B2

    公开(公告)日:2019-04-30

    申请号:US15182317

    申请日:2016-06-14

    Abstract: A MEMS sensor device provided with a sensing structure, having: a substrate with a top surface extending in a horizontal plane; an inertial mass, suspended over the substrate; elastic coupling elements, elastically connected to the inertial mass so as to enable inertial movement thereof with respect to the substrate as a function of a quantity to be detected along a sensing axis belonging to the horizontal plane; and sensing electrodes, capacitively coupled to the inertial mass so as to form at least one sensing capacitor, a value of capacitance of which is indicative of the quantity to be detected. The sensing structure moreover has a suspension structure, to which the sensing electrodes are rigidly coupled, and to which the inertial mass is elastically coupled through the elastic coupling elements; the suspension structure is connected to an anchorage structure, fixed with respect to the substrate, by means of elastic suspension elements.

    Microelectromechanical sensor device with improved stability to stress

    公开(公告)号:US12139396B2

    公开(公告)日:2024-11-12

    申请号:US17384566

    申请日:2021-07-23

    Abstract: A microelectromechanical sensor device has a detection structure including: a substrate having a first surface; a mobile structure having an inertial mass suspended above the substrate at a first area of the first surface so as to perform at least one inertial movement with respect to the substrate; and a fixed structure having fixed electrodes suspended above the substrate at the first area and defining with the mobile structure a capacitive coupling to form at least one sensing capacitor. The device further includes a single monolithic mechanical-anchorage structure positioned at a second area of the first surface separate from the first area and coupled to the mobile structure, the fixed structure, and the substrate and connection elements that couple the mobile structure and the fixed structure mechanically to the single mechanical-anchorage structure.

Patent Agency Ranking