Abstract:
An interface for expanding a signal starting from a first sensing signal and a second sensing signal, wherein a receiving intensity measuring element generates an intensity signal; and a selector is controlled to select each time the first sensing signal, the second sensing signal, or a combined signal deriving from a weighted combination of these signals. The selector uses a plurality of thresholds variable as a function of the intensity signal.
Abstract:
Described herein is a MEMS acoustic transducer device provided with a micromechanical detection structure that detects acoustic-pressure waves and supplies a transduced electrical quantity, and with an integrated circuit operatively coupled to the micromechanical detection structure and having a reading module that generates at output an audio signal as a function of the transduced electrical quantity. The integrated circuit is further provided with a recognition module, which recognizes a of sound activity event associated to the transduced electrical quantity. The MEMS acoustic transducer has an output that supplies at output a data signal that carries information regarding recognition of the sound activity event.
Abstract:
Described herein is a MEMS acoustic transducer device provided with a micromechanical detection structure that detects acoustic-pressure waves and supplies a transduced electrical quantity, and with an integrated circuit operatively coupled to the micromechanical detection structure and having a reading module that generates at output an audio signal as a function of the transduced electrical quantity. The integrated circuit is further provided with a recognition module, which recognizes a sound activity event associated to the transduced electrical quantity. The MEMS acoustic transducer has an output that supplies at output a data signal that carries information regarding recognition of the sound activity event.
Abstract:
Described herein is a MEMS acoustic transducer device provided with a micromechanical detection structure that detects acoustic-pressure waves and supplies a transduced electrical quantity, and with an integrated circuit operatively coupled to the micromechanical detection structure and having a reading module that generates at output an audio signal as a function of the transduced electrical quantity. The integrated circuit is further provided with a recognition module, which recognizes a of sound activity event associated to the transduced electrical quantity. The MEMS acoustic transducer has an output that supplies at output a data signal that carries information regarding recognition of the sound activity event.
Abstract:
Described herein is a MEMS acoustic transducer device provided with a micromechanical detection structure that detects acoustic-pressure waves and supplies a transduced electrical quantity, and with an integrated circuit operatively coupled to the micromechanical detection structure and having a reading module that generates at output an audio signal as a function of the transduced electrical quantity. The integrated circuit is further provided with a recognition module, which recognizes a of sound activity event associated to the transduced electrical quantity. The MEMS acoustic transducer has an output that supplies at output a data signal that carries information regarding recognition of the sound activity event.
Abstract:
A microelectromechanical vibration sensor includes: a first chamber; a second chamber; a semiconductor membrane between the first chamber and the second chamber; a reference electrode, capacitively coupled to the membrane; and a package structure, which encapsulates and insulates acoustically from the outside world the first chamber, the second chamber, and the membrane.
Abstract:
A method for simultaneous playback of audio tracks from digital transceiver devices, which are adapted to define a communication network. The digital devices store audio tracks to be played. One of the digital devices is actuated as a Master device (M) and the remaining N digital devices as Slave devices. The master device generates a pilot signal by selecting a pilot audio track to be played from among stored audio tracks and by adding a synchronization frequency (fS) to the pilot audio track, having an assigned value that falls out of the sound wave frequency range. The Slave devices receive a pilot portion of the pilot signal and extract the synchronization frequency and the received part of the pilot audio track. The slave devices use the pilot to identify a stored track to be played using the synchronization frequency as a sampling frequency.
Abstract:
An interface for expanding a signal starting from a first sensing signal and a second sensing signal, wherein a receiving intensity measuring element generates an intensity signal; and a selector is controlled to select each time the first sensing signal, the second sensing signal, or a combined signal deriving from a weighted combination of these signals. The selector uses a plurality of thresholds variable as a function of the intensity signal.