Abstract:
A method is for treating a doped gallium nitride substrate of a first conductivity type, having dislocations emerging on the side of at least one of its surfaces. The method may include: a) forming, where each dislocation emerges, a recess extending into the substrate from the at least one surface; and b) filling the recesses with doped gallium nitride of the second conductivity type.
Abstract:
The present description concerns an electronic device comprising a stack of a Schottky diode and of a bipolar diode, connected in parallel by a first electrode located in a first cavity and a second electrode located in a second cavity.
Abstract:
A method is for treating a doped gallium nitride substrate of a first conductivity type, having dislocations emerging on the side of at least one of its surfaces. The method may include: a) forming, where each dislocation emerges, a recess extending into the substrate from the at least one surface; and b) filling the recesses with doped gallium nitride of the second conductivity type.
Abstract:
A device includes a diode. The anode of the diode includes first, second, and third areas. The first area partially covers the second area and has a first doping level greater than a second doping level of the second area. The second area partially covers the third area and has the second doping level greater than a third doping level of the third area. A first insulating layer partially overlaps the first and second areas.
Abstract:
A monolithic component includes a field-effect power transistor and at least one first Schottky diode inside and on top of a gallium nitride substrate.
Abstract:
A Schottky diode is formed on a silicon support. A non-doped GaN layer overlies the silicon support. An AlGaN layer overlies the non-doped GaN layer. A first metallization forming an ohmic contact and a second metallization forming a Schottky contact are provided in and on the AlGaN layer. First vias extend from the first metallization towards the silicon support. Second vias extend from the second metallization towards an upper surface.
Abstract:
A Schottky diode is formed on a silicon support. A non-doped GaN layer overlies the silicon support. An AlGaN layer overlies the non-doped GaN layer. A first metallization forming an ohmic contact and a second metallization forming a Schottky contact are provided in and on the AlGaN layer. First vias extend from the first metallization towards the silicon support. Second vias extend from the second metallization towards an upper surface.