Abstract:
A lead frame having a plurality of concentric lead frame rings configured to receive and support a variety of integrated circuit die having a variety of sizes. The rings are separated from each other by gaps and coupled together by a plurality of tie bars. The concentric rings may be circular or rectangular. The tie bars may extend diagonally from the rings or perpendicularly to the rings.
Abstract:
A single chip integrated circuit (IC) package includes a die pad, and a spacer ring on the die pad defining a solder receiving area. A solder body is on the die pad within the solder receiving area. An IC die is on the spacer ring and is secured to the die pad by the solder body within the solder receiving area. Encapsulating material surrounds the die pad, spacer ring, and IC die. For a multi-chip IC package, a dam structure is on the die pad and defines multiple solder receiving areas. A respective solder body is on the die pad within a respective solder receiving area. An IC die is within each respective solder receiving area and is held in place by a corresponding solder body. Encapsulating material surrounds the die pad, dam structure, and plurality of IC die.
Abstract:
An image sensor device may include an interconnect layer, an image sensor IC carried by the interconnect layer and having an image sensing surface, and encapsulation material laterally surrounding the image sensor IC and covering an upper surface of the image sensor IC up to the image sensing surface. The image sensor device may include an optical plate having a peripheral lower surface carried by an upper surface of the encapsulation material and aligned with the image sensing surface, the optical plate being spaced above the image sensing surface to define an internal cavity, and a lens assembly coupled to the encapsulation material and aligned with the image sensing surface.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.
Abstract:
A proximity sensor having a relatively small footprint includes a substrate, a semiconductor die, a light emitting device, and a cap. The light emitting device overlies the semiconductor die. The semiconductor die is secured to the substrate and includes a sensor area capable of detecting light from by the light emitting device. The cap also is secured to the substrate and includes a light barrier that prevents some of the light emitted by the light emitting device from reaching the sensor area. In one embodiment, the light emitting device and the semiconductor die are positioned on the same side of the substrate, wherein the light emitting device is positioned on the semiconductor die. In another embodiment, the light emitting device is positioned on one side of the substrate and the semiconductor die is positioned on an opposing side of the substrate.
Abstract:
An integrated circuit (IC) package includes a die pad and an IC die secured on the die pad. The IC die had outer edges aligned with outer edges of the die pad. An encapsulating material body surrounds the die pad and IC die. Leads extend outwardly from the encapsulating material body and are coupled to the IC die. Each lead has an upper surface coplanar with an upper surface of the IC die. The die pad has a lower surface exposed through the encapsulating material body, and has a thickness greater than a thickness of each of the plurality of leads.