Abstract:
In an embodiment a method includes receiving, at an input of a low-voltage section of a gate driver, a PWM control signal with a switching frequency, providing, at an output of a high-voltage section of the gat driver, a gate-driving signal as a function of the PWM control signal to a power stage, wherein the high-voltage section is galvanically isolated from the low-voltage section, receiving, at a feedback input of the high-voltage section, at least one feedback signal indicative of an operation of the power stage, converting, at an ADC module of the high-voltage section, the feedback signal into a digital data stream, providing, to the ADC module, a conversion-trigger signal designed to determine a start of a conversion for acquiring a new sample of the feedback signal and sending, via an isolation communication channel between the low-voltage section and the high-voltage section, the digital data stream to the low-voltage section.
Abstract:
In an embodiment an isolated gate driver device includes a low-voltage section having a control input configured to receive a PWM control signal with a switching frequency from a control stage, a high-voltage section, galvanically isolated from the low-voltage section the high-voltage section including a driving output configured to provide a gate-driving signal as a function of the PWM control signal to a power stage having at least one switch, a feedback input configured to receive at least one feedback signal indicative of an operation of the power stag, and an ADC module configured to convert the feedback signal into a digital data stream and a conversion-control module coupled to the ADC module and configured to provide a conversion-trigger signal designed to determine a start of a conversion for acquiring a new sample of the feedback signal.
Abstract:
An integrated circuit with a hot-plug protection circuit includes input pins and an output pin. The input pins are electrically coupled to a common node in the hot-plug protection circuit via respective electrical connections. The integrated circuit includes clamping circuitry coupled between the common node and the output pin, the clamping circuitry activatable as a result of a voltage spike applied across the clamping circuitry. The plurality of electrical connections and the clamping circuitry provide respective current discharge paths between the input pins in the input pins and the output pin, the respective current discharge paths configured to become conductive as a result of a voltage spike applied to any of the input pins in the plurality of input pins being transferred to the common node via the respective electrical connection in the plurality of electrical connections electrically coupling said any of said input pins to the common node.
Abstract:
In an embodiment a circuit includes drive circuitry configured to be coupled to a control terminal of an electronic switch and configured to apply a discharge signal to the control terminal causing the electronic switch to become conductive and provide an electrical discharge path for an energized element, a sensing node configured to be coupled to the control terminal and configured to sense a voltage at the control terminal and a feedback network coupled between the sensing node and the drive circuitry, wherein the feedback network includes a comparator circuit coupled to the sensing node and configured to compare the voltage at the control terminal and sensed at the sensing node with a reference threshold and to provide a comparison signal having a first value and a second value, respectively, in response to the voltage at the control terminal being higher or lower than the reference threshold, and wherein the drive circuitry is configured to produce the discharge signal as a function of the comparison signal.
Abstract:
In an embodiment a method includes receiving, at an input of a low-voltage section of a gate driver, a PWM control signal with a switching frequency, providing, at an output of a high-voltage section of the gat driver, a gate-driving signal as a function of the PWM control signal to a power stage, wherein the high-voltage section is galvanically isolated from the low-voltage section, receiving, at a feedback input of the high-voltage section, at least one feedback signal indicative of an operation of the power stage, converting, at an ADC module of the high-voltage section, the feedback signal into a digital data stream, providing, to the ADC module, a conversion-trigger signal designed to determine a start of a conversion for acquiring a new sample of the feedback signal and sending, via an isolation communication channel between the low-voltage section and the high-voltage section, the digital data stream to the low-voltage section.
Abstract:
A driver circuit includes high- and low-side switches coupled to first and second output pins, respectively, that are couplable to a power switch control terminal. High- and low-side drive circuits supplied by programmable and fixed voltages, respectively, drive the high- and low-side switches, respectively. A voltage generator receives a programming signal and produces the programmable voltage. Control circuitry coupled to the high- and low-side drive circuits receives an input command signal indicating initiation of a discharge action, in response to which the control circuitry asserts a drive signal to activate the high-side drive circuit, turning on the high-side switch and clamping the first output pin at the programmable voltage. In response to expiration of a time interval, the control circuitry de-asserts the drive signal to activate the low-side drive circuit, turning on the low-side switch and tying the second output pin to the second supply voltage node.
Abstract:
In an embodiment an isolated gate driver device includes a low-voltage section having a control input configured to receive a PWM control signal with a switching frequency from a control stage, a high-voltage section, galvanically isolated from the low-voltage section the high-voltage section including a driving output configured to provide a gate-driving signal as a function of the PWM control signal to a power stage having at least one switch, a feedback input configured to receive at least one feedback signal indicative of an operation of the power stag, and an ADC module configured to convert the feedback signal into a digital data stream and a conversion-control module coupled to the ADC module and configured to provide a conversion-trigger signal designed to determine a start of a conversion for acquiring a new sample of the feedback signal.
Abstract:
In an embodiment a circuit includes drive circuitry configured to be coupled to a control terminal of an electronic switch and configured to apply a discharge signal to the control terminal causing the electronic switch to become conductive and provide an electrical discharge path for an energized element, a sensing node configured to be coupled to the control terminal and configured to sense a voltage at the control terminal and a feedback network coupled between the sensing node and the drive circuitry, wherein the feedback network includes a comparator circuit coupled to the sensing node and configured to compare the voltage at the control terminal and sensed at the sensing node with a reference threshold and to provide a comparison signal having a first value and a second value, respectively, in response to the voltage at the control terminal being higher or lower than the reference threshold, and wherein the drive circuitry is configured to produce the discharge signal as a function of the comparison signal.
Abstract:
An analog-to-digital conversion loop adapted to generate a digital output signal corresponding to a low-pass filtered replica of an analog input signal, including an analog adder configured to receive the input analog signal and an analog feedback signal, adapted to generate an analog error signal corresponding to the difference between the analog input signal and the analog feedback signal; an analog-to-digital converter having a nonlinear input-output conversion characteristic defining a larger quantization step the more the input to be converted differs from a null value, configured to receive the analog error signal and to generate a corresponding digital error signal a digital integrator configured to receive the digital error signal, configured to generate the digital output signal corresponding to the time integration of the digital error signal; a digital-to-analog converter, configured to receive the digital output signal and to generate the analog feedback signal as analog replica of the digital output signal.
Abstract:
An analog-to-digital conversion loop adapted to generate a digital output signal corresponding to a low-pass filtered replica of an analog input signal, including an analog adder configured to receive the input analog signal and an analog feedback signal, adapted to generate an analog error signal corresponding to the difference between the analog input signal and the analog feedback signal; an analog-to-digital converter having a nonlinear input-output conversion characteristic defining a larger quantization step the more the input to be converted differs from a null value, configured to receive the analog error signal and to generate a corresponding digital error signal a digital integrator configured to receive the digital error signal, configured to generate the digital output signal corresponding to the time integration of the digital error signal; a digital-to-analog converter, configured to receive the digital output signal and to generate the analog feedback signal as analog replica of the digital output signal.