Abstract:
A skid steer machine includes an operator cage supported on a skid steer machine frame, a pair of lift arms pivotably attached to the skid steer machine frame behind the operator cage and extending longitudinally on both sides of the operator cage, and a rear mounted engine compartment supported on the skid steer machine frame. The rear mounted engine compartment includes an internal combustion engine, a diesel particulate filter fluidly connected to the internal combustion engine and positioned between the internal combustion engine and the operator cage, and a cooling package having a predominantly horizontal orientation. The cooling package is at a higher location within the rear mounted engine compartment than the diesel particulate filter.
Abstract:
A skid steer machine includes an operator cage supported on a skid steer machine frame. A pair of lift arms are pivotably attached to the skid steer machine frame behind the operator cage and extend longitudinally on both sides of the operator cage. A cooling package includes a first heat exchanger and a second heat exchanger, and a blower fan configured to blow air in parallel through the first heat exchanger and the second heat exchanger. The cooling package is pivotably mounted to the skid steer machine frame using at least one pivotable mounting assembly and is pivotable between an operational position and a maintenance position. At least one non-metallic vibration isolator is positioned between the cooling package and the skid steer machine frame.
Abstract:
A machine includes an internal combustion engine disposed within an engine compartment and supported on a machine frame. An exhaust stack has an inlet fluidly connected to an exhaust manifold of the internal combustion engine and an outlet in fluid communication with ambient air. A diesel particulate filter is disposed along the exhaust stack. A cooling package includes at least one heat exchanger and a blower fan. The blower fan is configured to blow cooling air from the engine compartment sequentially through the at least one heat exchanger and an outlet of the cooling package. Exhaust gas exiting the exhaust stack outlet is mixed with the cooling air exiting the cooling package outlet in a high temperature zone surrounding the exhaust stack outlet to form a fluid mixture, and a temperature of the fluid mixture at a perimeter of the high temperature zone is below 200 degrees Celsius.
Abstract:
A machine includes an internal combustion engine disposed within an engine compartment and supported on a machine frame. An exhaust stack has an inlet fluidly connected to an exhaust manifold of the internal combustion engine and an outlet in fluid communication with ambient air. A diesel particulate filter is disposed along the exhaust stack, and the machine includes an active regeneration system for regenerating the diesel particulate filter. A cooling package including at least one heat exchanger and a blower fan. The blower fan is configured to blow cooling air from the engine compartment sequentially through the at least one heat exchanger and an outlet of the cooling package. Exhaust gas exiting the exhaust stack outlet is mixed with the cooling air exiting the cooling package outlet in a high temperature zone surrounding the exhaust stack outlet to form a fluid mixture. An electronic control module is in control communication with the active regeneration system and includes a regeneration control algorithm operable to detect a speed of the blower fan.
Abstract:
A machine includes an internal combustion engine disposed within an engine compartment and supported on a machine frame. An exhaust stack has an inlet fluidly connected to an exhaust manifold of the internal combustion engine and an outlet in fluid communication with ambient air. A diesel particulate filter is disposed along the exhaust stack, and the machine includes an active regeneration system for regenerating the diesel particulate filter. A cooling package including at least one heat exchanger and a blower fan. The blower fan is configured to blow cooling air from the engine compartment sequentially through the at least one heat exchanger and an outlet of the cooling package. Exhaust gas exiting the exhaust stack outlet is mixed with the cooling air exiting the cooling package outlet in a high temperature zone surrounding the exhaust stack outlet to form a fluid mixture. An electronic control module is in control communication with the active regeneration system and includes a regeneration control algorithm operable to detect a speed of the blower fan.
Abstract:
A skid steer machine includes an operator cage supported on a skid steer machine frame, a pair of lift arms pivotably attached to the skid steer machine frame behind the operator cage and extending longitudinally on both sides of the operator cage, and a rear mounted engine compartment supported on the skid steer machine frame. The rear mounted engine compartment includes an internal combustion engine, a diesel particulate filter fluidly connected to the internal combustion engine and positioned between the internal combustion engine and the operator cage, and a cooling package having a predominantly horizontal orientation. The cooling package is at a higher location within the rear mounted engine compartment than the diesel particulate filter.
Abstract:
A machine includes an internal combustion engine disposed within an engine compartment and supported on a machine frame. An exhaust stack has an inlet fluidly connected to an exhaust manifold of the internal combustion engine and an outlet in fluid communication with ambient air. A diesel particulate filter is disposed along the exhaust stack. A cooling package includes at least one heat exchanger and a blower fan. The blower fan is configured to blow cooling air from the engine compartment sequentially through the at least one heat exchanger and an outlet of the cooling package. Exhaust gas exiting the exhaust stack outlet is mixed with the cooling air exiting the cooling package outlet in a high temperature zone surrounding the exhaust stack outlet to form a fluid mixture, and a temperature of the fluid mixture at a perimeter of the high temperature zone is below 200 degrees Celsius.
Abstract:
A clamping assembly for permitting passage of an elongated member through a wall. The clamping assembly includes a first clamping member and a second clamping member. The first clamping member includes a first arm extending outwardly from a first central portion of the first clamping member. The second clamping member includes a second arm extending outwardly from a second central portion of the second clamping member. The second clamping member is configured to be removably engaged with the first clamping member, such that the first arm and the second arm define an opening for permitting passage of the elongated member.
Abstract:
A tank for a hydraulic fluid has a housing with opposed end walls and side walls defining an interior chamber. A primary baffle is disposed inside the housing and divides the interior chamber into an inlet chamber and an outlet chamber, with a primary gap between the primary baffle and the housing fluidly communicating between the inlet chamber and the outlet chamber. The primary baffle further defines a contact surface facing the inlet chamber and has first and second weirs which extend into the inlet chamber. A first fluid inlet fluidly communicates with the inlet chamber and is oriented along a first inlet axis that intersects the contact surface, while a fluid outlet communicates with the outlet chamber. The tank produces an interior flow that mixes and deaerates the fluid as it travels from the first fluid inlet to the fluid outlet.
Abstract:
A tank for a hydraulic fluid has a housing with opposed end walls and side walls defining an interior chamber. A primary baffle is disposed inside the housing and divides the interior chamber into an inlet chamber and an outlet chamber, with a primary gap between the primary baffle and the housing fluidly communicating between the inlet chamber and the outlet chamber. The primary baffle further defines a contact surface facing the inlet chamber and has first and second weirs which extend into the inlet chamber. A first fluid inlet fluidly communicates with the inlet chamber and is oriented along a first inlet axis that intersects the contact surface, while a fluid outlet communicates with the outlet chamber. The tank produces an interior flow that mixes and deaerates the fluid as it travels from the first fluid inlet to the fluid outlet.