Abstract:
A method for fabricating a solid state battery device. The device can include electrochemically active layers and an overlaying barrier material, with an inter-digitated layer structure configured with a post terminated lead structure. The method can include forming a plurality of battery device cell regions (1−N) formed in a multi-stacked configuration, wherein each of the battery device cell regions comprises a first current collector and a second current collector. The method can also include forming a thickness of a first and second lead material to cause formation of a first and second lead structure to interconnect each of the first and second current collectors associated with each of the plurality of battery device cell regions and to isolate each of the second current collectors extending spatially outside of the battery device cell region within a first and second isolated region, respectively.
Abstract:
In an example, a solid-state battery apparatus is provided. The apparatus has a plurality of battery cell devices, each of the devices having an anode device, an electrolyte device, and a cathode device. The apparatus has an equivalent circuit (EC) numbered from 1 through N characterizing the plurality of battery cells devices, a state of charge characterizing the plurality of battery cell devices, and a resistor, capacitor, or other electrical parameters provided in the equivalent circuit.
Abstract:
A method for fabricating a solid state battery device. The device can include electrochemically active layers and an overlaying barrier material, with an inter-digitated layer structure configured with a post terminated lead structure. The method can include forming a plurality of battery device cell regions (1-N) formed in a multi-stacked configuration, wherein each of the battery device cell regions comprises a first current collector and a second current collector. The method can also include forming a thickness of a first and second lead material to cause formation of a first and second lead structure to interconnect each of the first and second current collectors associated with each of the plurality of battery device cell regions and to isolate each of the second current collectors extending spatially outside of the battery device cell region within a first and second isolated region, respectively.
Abstract:
Techniques related to the manufacture of electrochemical cells are disclosed in herein. Specifically, a method for manufacturing solid state batteries can include an iterative set of process sequences that can be repeated a number of times to build multiple stacks to achieve high capacity which is greater than 0.1 mAh.
Abstract:
A method of fabricating a multilayered thin film solid state battery device. The method steps include, but are not limited to, the forming of the following layers: substrate member, a barrier material, a first electrode material, a thickness of cathode material, an electrolyte, an anode material, and a second electrode material. The formation of the barrier material can include forming a polymer material being configured to substantially block a migration of an active metal species to the substrate member, and being characterized by a barrier degrading temperature. The formation of cathode material can include forming a cathode material having an amorphous characteristic, while maintaining a temperature of about −40 Degrees Celsius to no greater than 500 Degrees Celsius such that a spatial volume is characterized by an external border region of the cathode material. The method can then involve transferring the resulting thin film solid state battery device.
Abstract:
A method and system for designing a manufacturing facility for solid state thin film battery devices. The method can include providing a plurality of processing tools for arrangement within a predetermined spatial region of one or more manufacturing facilities. A plurality of variables can be assigned for the plurality of processing tools. A target financial variable can be defined to evaluate different manufacturing processing tool configurations. The plurality of variables in the tensor relationship can be processed to reduce a magnitude of the target variable. An optimized set of the plurality of processing tools and respective configuration with the plurality of tools associated with the reduced magnitude of the target variable can be determined through processing. The optimized set of the plurality of processing tools in the respective configuration can be used in the one or more manufacturing facilities for the manufacture of a solid state thin film battery device.