Abstract:
An augmented reality providing apparatus is provided. The augmented reality providing apparatus includes a lens including a first lens portion including a first reflective member, and a second lens portion including a second reflective member, and a display device on one side of the lens for displaying first and second images, wherein the first reflective member reflects the first image at a first angle, and the second reflective member reflects the second image at a second angle that is different from the first angle.
Abstract:
A display device includes a display panel including a display surface having a Lambertian light emission distribution, and a viewing angle modulator disposed on the display panel. The viewing angle modulator includes a first refractive layer including a diffraction structure on a surface, a refractive index conversion layer disposed on the first refractive layer and including an electro-optical material having a refractive index that changes when a voltage is applied to the electro-optical material, and a second refractive layer disposed on the refractive index conversion layer. The refractive index conversion layer includes a base layer, and an optical structure disposed on the base layer that changes a path of light incident on a surface facing the second refractive layer.
Abstract:
Provided is a liquid crystal display including: a lower display panel including a lower insulating substrate and a lower reflective layer; an upper display panel including an upper insulating substrate and an upper reflective layer; a liquid crystal layer positioned between the lower reflective layer of the lower display panel and the upper reflective layer of the upper display panel; and a backlight unit positioned on a lower portion of the lower display panel and including a light source, wherein a pair of field generating electrodes are formed in at least one display panel of the lower display panel and the upper display panel, wherein microcavities are formed in the lower reflective layer, the upper reflective layer, and the liquid crystal layer, and wherein a wavelength and luminance of light resonated and emitted in the microcavities are changed by an electric field generated by the field generating electrodes.
Abstract:
An augmented reality providing apparatus is provided. The augmented reality providing apparatus includes a lens including a first lens portion including a first reflective member, and a second lens portion including a second reflective member, and a display device on one side of the lens for displaying first and second images, wherein the first reflective member reflects the first image at a first angle, and the second reflective member reflects the second image at a second angle that is different from the first angle.
Abstract:
A method for manufacturing a display device includes forming a first gate metal wire on a substrate, forming a first insulation layer that covers the first gate metal wire, forming a second gate metal wire on the first insulation layer, forming a second main insulation layer that covers the second gate metal wire, forming a second auxiliary insulation layer on the second main insulation layer, forming an exposed portion of an upper surface of the second main insulation layer by polishing the second auxiliary insulation layer, and forming a first data metal wire on the second main insulation layer and the second auxiliary insulation layer.
Abstract:
A method of manufacturing a transistor display panel and a transistor display panel, the method including forming a polycrystalline silicon layer on a substrate; forming an active layer by patterning the polycrystalline silicon layer; forming a first insulating layer covering the substrate and the active layer; exposing the active layer by polishing the first insulating layer using a polishing apparatus; and forming a second insulating layer that contacts the first insulating layer and the active layer, wherein exposing the active layer by polishing the first insulating layer includes coating a first slurry on a surface of the first insulating layer, the first slurry reducing a polishing rate of the active layer.
Abstract:
A lighting unit for a display device includes: a plurality of light sources which emits light; a wedge-shaped light guide having an incident surface disposed close to the light sources and an opposing surface disposed opposite the incident surface; and a lens sheet disposed on the light guide, where the lens sheet includes a plurality of lenses, each having an axis in a direction from the incident surface to the opposing surface, where the light guide is thinner at the incident surface than at the opposing surface, and a radius of curvature of each of the lenses is larger at the incident surface than the opposing surface.
Abstract:
In a method of manufacturing a display device, the method includes: forming a conductive layer on a base; forming an organic layer, with a hole partially exposing the conductive layer, on the conductive layer; polishing an upper surface of the organic layer; and forming a light emitting element on the polished organic layer.
Abstract:
A thin-film transistor (TFT) array substrate is provided. The TFT array substrate includes a base substrate, a semiconductor layer disposed on the base substrate, an insulating layer disposed on the semiconductor layer, and a gate electrode disposed on the insulating layer. A top surface of a portion of the insulating layer overlapping the semiconductor layer in a plan view of the base substrate and a top surface of the gate electrode are placed on the same level.
Abstract:
A method for manufacturing a display device includes forming a first gate metal wire on a substrate, forming a first insulation layer that covers the first gate metal wire, forming a second gate metal wire on the first insulation layer, forming a second main insulation layer that covers the second gate metal wire, forming a second auxiliary insulation layer on the second main insulation layer, forming an exposed portion of an upper surface of the second main insulation layer by polishing the second auxiliary insulation layer, and forming a first data metal wire on the second main insulation layer and the second auxiliary insulation layer.