Abstract:
A thin-film transistor array panel includes an insulation substrate, a gate line disposed on the insulation substrate, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line disposed on the semiconductor layer and including a source electrode, a drain electrode disposed on the semiconductor layer and facing the source electrode, a first electrode disposed on the gate insulating layer, a first passivation layer disposed on the first electrode and including silicon nitride, a second passivation layer disposed on the first passivation and including silicon nitride, and a second electrode disposed on the passivation layer, in which a first ratio of nitrogen-hydrogen bonds to silicon-hydrogen bonds in the first passivation layer is different from a second ratio of nitrogen-hydrogen bonds to silicon-hydrogen bonds in the second passivation layer.
Abstract:
A thin film transistor array panel device comprises: a base substrate; a barrier layer disposed over the base substrate and comprising a plurality of transparent material layers; and an array of thin film transistors disposed over the barrier layer. A difference between a refractive index of the barrier layer and a refractive index of the base substrate may be within about 6%. The transparent material layers may be arranged such that the transparent material layers having compressive residual stress and the transparent material layers having tensile residual stress are alternately stacked. Each of the transparent material layers may comprise silicon oxynitride (SiON).
Abstract:
A thin film transistor array panel according to an exemplary embodiment of the present invention includes: an insulating substrate; a polycrystal semiconductor layer formed on the insulating substrate; a buffer layer formed below the polycrystal semiconductor layer and containing fluorine; a gate electrode overlapping the polycrystal semiconductor layer; a source electrode and a drain electrode overlapping the polycrystal semiconductor layer and separated from each other; and a pixel electrode electrically connected to the drain electrode.
Abstract:
A thin film transistor array panel according to an exemplary embodiment of the present invention includes: an insulating substrate; a polycrystal semiconductor layer formed on the insulating substrate; a buffer layer formed below the polycrystal semiconductor layer and containing fluorine; a gate electrode overlapping the polycrystal semiconductor layer; a source electrode and a drain electrode overlapping the polycrystal semiconductor layer and separated from each other; and a pixel electrode electrically connected to the drain electrode.
Abstract:
Provided are liquid crystal display and the method for manufacturing the same. According to an aspect of the present invention, there is provided a liquid crystal display device, including a first substrate; a gate electrode disposed on the first substrate; a semiconductor pattern layer disposed on the gate electrode; and a source electrode and a drain electrode disposed on the semiconductor pattern layer and facing each other, wherein a diffusion prevention pattern is disposed on the semiconductor pattern layer to prevent diffusion into the semiconductor pattern layer or to maintain uniform thickness of the semiconductor pattern layer.
Abstract:
A thin film transistor array panel device comprises: a base substrate; a barrier layer disposed over the base substrate and comprising a plurality of transparent material layers; and an array of thin film transistors disposed over the barrier layer. A difference between a refractive index of the barrier layer and a refractive index of the base substrate may be within about 6%. The transparent material layers may be arranged such that the transparent material layers having compressive residual stress and the transparent material layers having tensile residual stress are alternately stacked. Each of the transparent material layers may comprise silicon oxynitride (SiON).