Abstract:
A coil electronic component includes a body including a plurality of insulating layers and coil patterns disposed on the insulating layers, and external electrodes formed on external surfaces of the body and connected to the coil patterns, wherein the external electrodes include first layers being electroless plating layers and second layers formed on the first layers and having a form in which metal particles are dispersed in a polymer base, respectively.
Abstract:
A coil component includes a body portion, a coil portion, and an electrode portion. The body portion includes a magnetic material, the coil portion is disposed in the body portion, and the electrode portion is disposed on the body portion and electrically connected to the coil portion. The coil portion includes a first coil layer in which a plurality of conductors having a planar spiral shape are stacked, a second coil layer in which a plurality of conductors having a planar spiral shape are stacked, and a first bump disposed between the first and second coil layers to electrically connect the first and second coil layers to each other. The first coil layer and the second coil layer are electrically connected to each other through the first bump to form a single coil having coil turns adjacent to each other in horizontal and vertical directions.
Abstract:
The present invention relates to an insulating composition for a multilayer printed circuit board including: nanoclay 0.5 to 10 wt %, a soluble liquid crystal oligomer 5 to 50 wt %, an epoxy resin 5 to 50 wt %, a solvent 5 to 40 wt %, and an inorganic filler 50 to 80 wt %, a prepreg and an insulating film using the composition, and a multilayer printed circuit board including the prepreg and the insulating film as an interlayer insulating layer. Accordingly, the composition prepared by mixing nanoclay with the soluble liquid crystal oligomer (LCO), the epoxy resin, and the inorganic filler having excellent thermal, electrical, and mechanical characteristics can be implemented as a substrate insulating material such as a prepreg or a film which can implement a low efficient of thermal expansion, high rigidity, and high thermal characteristics required for a package substrate with advanced specifications.
Abstract:
A coil electronic component includes a body having a multilayer structure formed by stacking a plurality of sheets and external electrodes disposed on outer surfaces of the body. A coil pattern is printed on each of the plurality of sheets. The coil pattern includes a coil body and a corner pattern spaced apart from the coil pattern and coupled to the external electrodes. An inner edge of the second coil pattern facing the coil body is formed as a curved line or a linear line.
Abstract:
A coil electronic component includes: a plurality of coil layers including, respectively, coil patterns and connection patterns disposed outside the coil patterns and forming a stacking structure; conductive vias connecting the coil patterns formed on different levels to each other; and external electrodes electrically connected to the plurality of coil layers. The coil patterns of at least two of the plurality of coil layers may have the same shape and be electrically connected to each other in parallel.
Abstract:
A chip component includes a magnetic substrate having ferrite layers, and an insulating layer disposed on the magnetic substrate and having an electrode disposed therein. An external electrode is connected to the electrode on the insulating layer. The magnetic substrate and the insulating layer have a chemical coupling structure formed on an interface therebetween. The chemical coupling structure includes Si—O—C or Si—O—N.
Abstract:
An inductor includes a body in which a plurality of insulating layers on which a plurality of coil patterns are arranged are stacked, and first and second external electrodes disposed inside the body, wherein the plurality of coil patterns are connected by coil connecting portions and form a coil in which opposing ends thereof are connected to the first and second external electrodes, and the first and second external electrodes are directly connected to the opposing ends of the plurality of coil patterns inside the body.
Abstract:
A coil component includes: a body including a magnetic material, coil pattern layers disposed in the magnetic material, a core portion surrounded by the coil pattern layers, and an insulating layer disposed in the core portion and between adjacent coil pattern layers among the coil pattern layers, wherein each of the coil pattern layers comprises a spiral-shaped pattern; and an external electrode disposed on the body.
Abstract:
A coil component includes: a body including a magnetic material, coil pattern layers disposed in the magnetic material, a core portion surrounded by the coil pattern layers, and an insulating layer disposed in the core portion and between adjacent coil pattern layers among the coil pattern layers, wherein each of the coil pattern layers comprises a spiral-shaped pattern; and an external electrode disposed on the body.
Abstract:
Disclosed herein is a multilayer inductor, manufactured by stacking laminates each including: a substrate having internal electrode coil patterns formed thereon; and a magnetic substance filling the substrate on which the internal electrode coil patterns are formed, wherein the substrate is formed by using a composition including a magnetic material, so that, when the substrate is placed in the middle of the electrode circuit patterns at the time of manufacturing a power inductor, the substrate can be utilized as a gap material, and thus the thickness of an inductor chip can be minimized, and, in addition, the magnetic material is included in the substrate forming composition, thereby improving magnetic characteristics, and the liquid crystal oligomer and the nanoclay are added to the composition, to thereby increase insulating property between magnetic metals, thereby raising inductance, and thus dimensional stability and physical hardness of the structure can be secured.