Abstract:
A solid oxide cell stack includes a first end plate having a flow path, a solid oxide cell disposed on the first end plate, and a second end plate including a lower region disposed on the solid oxide cell and having a first through-hole, and an upper region disposed on the lower region and having a second through-hole. In the second end plate, an inner sidewall of the upper region forming the second through-hole is inclined such that a width of the second through-hole increases in an upward direction.
Abstract:
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole and having an active surface having connection pads disposed thereon and an inactive surface disposed to oppose the active surface; a dummy chip disposed in the through-hole and spaced apart from the semiconductor chip; a second connection member disposed on the first connection member, the dummy chip, and the active surface of the semiconductor chip; and an encapsulant encapsulating at least portions of the first connection member, the dummy chip, and the inactive surface of the semiconductor chip. The first connection member and the second connection member include, respectively, redistribution layers electrically connected to the connection pads.
Abstract:
An electronic component package may include: a redistribution layer including a first insulating layer, a first conductive pattern disposed on the first insulating layer, and a first via connected to the first conductive pattern while penetrating through the first insulating layer; an electronic component disposed on the redistribution layer; and an encapsulant encapsulating the electronic component. The first via has a horizontal cross-sectional shape in which a distance between first and second edge points of the first via in a first direction passing through the center of the first via and the first and second edge points thereof is shorter than that between third and fourth edge points of the first via in a second direction perpendicular to the first direction and passing through the center of the first via and the third and fourth points thereof.
Abstract:
Disclosed herein are an interconnect for a solid oxide fuel cell and a method for manufacturing the same, the interconnect including: a conductive core; an oxidation-resistant insulating part receiving therein; and an oxidation-resistant conductive material layer coated on an exposed surface of the conductive core, which is exposed to an external environment by removing a portion of the oxidation-resistant insulating part, so that the interconnect can maintain durability against high-temperature heat generated from a flat type solid oxide fuel cell for a long time and thus have a very small voltage loss due to oxidation even with the use over a long-time period; have no sealing problem and no delaminating problem of a coating film due to a difference in coefficient of thermal expansion; be inexpensive; and have a simple structure.
Abstract:
A printed circuit board and a method of manufacturing the same are provided. The printed circuit board includes an inner layer including at least one insulating layer and wiring parts, and outer layers disposed on opposing sides of the inner layer, the outer layers including reinforcing layers and wiring parts, the reinforcing layers having a greater degree of rigidity than the insulating layer
Abstract:
An optical assembly includes: a camera module; at least one actuator configured to move the camera module; and a connection substrate having one end connected to the camera module such that at least a portion of the connection substrate is configured to move along with movement of the camera module. The connection substrate includes a rigidity reduction portion reducing rigidity of the connection substrate in a portion of the substrate in which distortion or warpage occurs according to the movement of the camera module.
Abstract:
A chip component includes a magnetic substrate having ferrite layers, and an insulating layer disposed on the magnetic substrate and having an electrode disposed therein. An external electrode is connected to the electrode on the insulating layer. The magnetic substrate and the insulating layer have a chemical coupling structure formed on an interface therebetween. The chemical coupling structure includes Si—O—C or Si—O—N.
Abstract:
An electronic component package may include: a redistribution layer including a first insulating layer, a first conductive pattern disposed on the first insulating layer, and a first via connected to the first conductive pattern while penetrating through the first insulating layer; an electronic component disposed on the redistribution layer; and an encapsulant encapsulating the electronic component. The first via has a horizontal cross-sectional shape in which a distance between first and second edge points of the first via in a first direction passing through the center of the first via and the first and second edge points thereof is shorter than that between third and fourth edge points of the first via in a second direction perpendicular to the first direction and passing through the center of the first via and the third and fourth points thereof.
Abstract:
There are provided a solid oxide fuel cell capable of firmly sealing an anode while simultaneously securing rigidity of an anode support structure, and a manufacturing method thereof. The solid oxide fuel cell includes an electrolyte layer, a cathode provided on one surface of the electrolyte layer, an anode provided on the other surface of the electrolyte layer, and at least one reinforcing member disposed within the anode to reinforce rigidity thereof.
Abstract:
A thermoelectric module includes a stack structure of a plurality of insulating layers, a plurality of thermoelectric elements formed with the insulating layer interposed therebetween and including a first-type semiconductor device, a second-type semiconductor device, a first electrode connected to the first-type semiconductor device, a second electrode connected to the second-type semiconductor device, and a connection electrode connecting the first-type and second-type semiconductor devices, and a conductive via penetrating through the insulating layer to connect thermoelectric elements adjacent to each other, among the plurality of thermoelectric elements.